Роль минеральных элементов в питании растений земляники садовой
Автор: Марченко Л.А., Акимова С.В., Соловьев А.В., Макаров С.С., Самощенков Е.Г., Тер-петросянц Г.Э., Зубков А.В.
Журнал: Овощи России @vegetables
Рубрика: Садоводство, овощеводство, виноградарство и лекарственные культуры
Статья в выпуске: 5 (79), 2024 года.
Бесплатный доступ
Актуальность. Увеличение мирового производства плодов земляники садовой обусловлено высокой востребованностью продукции для потребления в свежем виде, а также в качестве сырья для переработки. Лидирующими странами являются: КНР, США, Турция, Египет, Мексика, Испания, Россия, Польша, Южная Корея, Бразилия. Наращивание объёмов производства обеспечивается за счет высокой продуктивности новых сортов и интенсификации технологий выращивания культуры земляники и в частности питания растений. Возможность управления питанием растений земляники садовой является одной из приоритетных задач от решения которой зависит реализация потенциала продуктивности растений, а также качество получаемой продукции Роль многих макрои микроэлементов в питании растений до конца не изучена. Проводятся многочисленные исследования по выявлению механизмов их поглощения и перемещения в растениях земляники. Изучаются новые формы удобрений, позволяющие эффективно влиять на процессы роста и развития растений, минимизировать воздействие на окружающую среду.
Минеральные элементы, земляника садовая, питание растений
Короткий адрес: https://sciup.org/140307832
IDR: 140307832 | DOI: 10.18619/2072-9146-2024-5-79-83
Список литературы Роль минеральных элементов в питании растений земляники садовой
- https://www.tridge.com/production?code=0544&producer=WL.
- Жученко А.А. Адаптивное растениеводство (эколого-генетические основы). Теория и практика. М.: Изд-во Агрорус. 2009. 1104 с. [Zhuchenko A.A. Adaptive plant growing (ecological and genetic foundations). Theory and practice. Moscow: Agrorus Publishing House. 2009. 1104 p.] (In Russ.)
- Трухачев В.И. Интенсивные технологии в развитии отечественного садоводства. Экономика сельского хозяйства России. 2020;(3):44–47. https://doi.org/10.32651/203-44 https://elibrary.ru/itctet [Truhachev V.I. Intensive technologies in the development of domestic horticulture. Ekonomika sel'skogo hozyajstva Rossii. 2020;(3):44–47. https://doi.org/10.32651/203-44 https://elibrary.ru/itctet] (In Russ.)
- Мишуров Н.П., Федоренко В.Ф., Завражнов А.И., Завражнов А.А., Ланцев В.Ю., Воробьев В.Ф., Кондратьева О.В., Федоров А.Д., Слинько О.В., Войтюк В.А. Инновационные технологии выращивания высококачественного посадочного материала многолетних плодово-ягодных культур. Аналитический обзор. М., 2020. 96 с. [Mishurov N.P., Fedorenko V.F., Zavrazhnov A.I., Zavrazhnov A.A., Lancev V.Yu., Vorob'ev V.F., Kondrat'eva O.V., Fedorov A.D., Slin'ko O.V., Vojtyuk V.A. Innovative technologies for growing high-quality planting material of perennial fruit and berry crops. Analytical review. Moscow, 2020. 96 p.] (In Russ.)
- Овсянников Ю.А. О Единстве процессов фотосинтеза, азотфиксации и почво- образования. Аграрный вестник Урала. 2022;1(216):39–46. https://doi.org/10.32417/1997-4868-2022-216-01-39-46 https://elibrary.ru/ebvdxx [Ovsyannikov Yu.A. On the unity of the processes of photosynthesis, nitrogen fixation and soil formation. Agrarian bulletin of the Urals. 2022;1(216):39–46. https://doi.org/10.32417/1997-4868-2022-216-01-39-46 https://elibrary.ru/ebvdxx] (In Russ.)
- Hern´andez-Martínez N.R., Blanchard C., Wells D., Salazar-Guti´errez M.R. Current state and future perspectives of commercial strawberry production: A review. Scientia Horticulturae. 2023; (312):111893. https://doi.org/10.1016/j.scienta.2023.111893
- Zhang Yu., Yasutake D., Hidaka K., Kitano M., Okayasu T. CFD analysis for evaluating and optimizing spatial distribution of CO2 concentration in a strawberry greenhouse under different CO2 enrichment methods. Computers and Electronics in Agriculture. 2020;(179):105811. https://doi.org/10.1016/j.compag.2020.105811
- Shahini E., Berxolli A., Kovalenko O., Markova N., Zadorozhnii Yu. Features of growing garden strawberries in open ground conditions. Scientific Horizons. 2023;26(7):106–117. https://doi.org/10.48077/scihor7.2023.106.
- Bhagat P., Panigrahi H. Effect of bio-fertilizers on growth, yield and quality of strawberry (Fragaria x ananassa Duch.) cv. Nabila under net tunnel. The Pharma Innovation Journal. 2020;9(1):442–446. https://www.thepharmajournal.com/archives/2020/vol9issue1/PartH/9-1-38-229
- Rostami M., Shokouhian A. & Mohebodini М. Effect of Humic Acid, Nitrogen Concentrations and Application Method on the Morphological, Yield and Biochemical Characteristics of Strawberry ‘Paros’. International Journal of Fruit Science. 2022;22(1):203–214. https://doi.org/10.1080/15538362.2021.2022566
- Shen H., Dong S., Xiao J., & Zhi, Y. Effects of N and P enrichment on plant photosynthetic traits in alpine steppe of the Qinghai-Tibetan Plateau. BMC Plant Biology. 2022;(396):2–11. https://doi.org/10.1186/s12870-022-03781-9
- Farjana S., Park I.S. & Choi J.M. Impact of controlled nitrogen application in water solution on seedling growth, tissue and soil nutrient concentrations in vegetative propagation of strawberry. Hortic. Environ. Biotechnol. 2023;(64):41–50. https://doi.org/10.1007/s13580-022-00460-4.
- Farjana S., Park I.S., & Choi J.M. Impact of controlled nitrogen application in water solution on seedling growth, tissue and soil nutrient concentrations in vegetative propagation of strawberry. Horticulture, Environment, and Biotechnology. 2023;1(2):1–10. https://doi.org/10.1007/s13580-022-00460-4
- Rostami M., Shokouhian A. & Mohebodini М. Effect of Humic Acid, Nitrogen Concentrations and Application Method on the Morphological, Yield and Biochemical Characteristics of Strawberry ‘Paros’. International Journal of Fruit Science. 2022;22(1):203–214. https://doi.org/10.1080/15538362.2021.2022566.
- Rueda D., Valencia G., Soria N., Rueda B.B., Manjunatha B., Kundapur R.R., Selvanayagam M. Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. Journal of Applied Pharmaceutical Science. 2016;6(01):48–54. https://doi.org/10.7324/JAPS.2016.600108
- Yu W., Zheng J., Wang Y., Ji F., Zhu B. Adjusting the nutrient solution formula based on growth stages to promote the yield and quality of strawberry in greenhouse. Int. J. Agric. Biol. Eng. 2023;(16):57–64. https://doi.org/10.25165/j.ijabe.20231602.7797
- Agulheiro-Santos A.C. Quality of Strawberry ‘Camarosa’ with Different Levels of Nitrogen Fertilization. Acta Horticulturae. 2009. P.907–910. https://doi.org/10.17660/ActaHortic.2009.842.200
- Costamagna G., Chiabrando V., Fassone E., Mania I., Gorra R., Ginepro M., & Giacalone G. Characterization and use of absorbent materials as slow-release fertilisers for growing strawberry: Preliminary results. Sustainability. 2020;12(17):6854–6867. https://doi.org/10.3390/su12176854.
- Cvelbar W.N., Koron D., Jakopiˇc J., Veberiˇc R., Hudina M., Cesnik B.H. Influence of Nitrogen, Calcium and Nano-Fertilizer on Strawberry (Fragaria × ananassa Duch.) Fruit Inner and Outer Quality. Agronomy. 2021;(11):997. https:// doi.org/10.3390/agronomy11050997
- Иванова Т.Е., Лекомцева Е.В., Соколова Е.В., Тутова Т.Н., Несмелова Л.А. Влияние микроудобрений на урожайность и качество земляники садовой. Вестник Алтайского государственного аграрного университета. 2022;8(214):24–31. https://doi.org/10.53083/1996-4277-2022-214-8-24-31 https://elibrary.ru/oyojkz [Ivanova T.E., Lekomceva E.V., Sokolova E.V., Tutova T.N., Nesmelova L.A. Impact of microbiological fertilizers on the yield and quality of garden strawberry. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2022;8(214):24–31. https://doi.org/10.53083/1996-4277-2022-214-8-24-31 https://elibrary.ru/oyojkz] (In Russ.)
- Cárdenas-Navarro R., Ruiz-Corro R., López-Pérez L., Castellanos-Morales V. del C., Bravo-Hernández N.L., España-Boquera M.L., Villegas-Moreno J.A. Effect of nitrogen and Rhizophagus irregularis inoculation on strawberry plants. Wulfenia. 2024;24(10):234–246.
- Yang X., Du R., He D., Li D., Chen J., Han X., Wang Z., Zhang Z. Optimal combination of potassium coupled with water and nitrogen for strawberry quality based on consumer-orientation. Agricultural Water Management. 2023;(287):108461. https://doi.org/10.1016/j.agwat.2023.108461.
- Abobatta W.F., Abd Alla M.A. Role of Phosphates Fertilizers in Sustain Horticulture Production: Growth and Productivity of Vegetable Crops. Asian Journal of Agricultural Research. 2023;17(1):1–7. https://doi.org/10.3923/ajar.2023.1.7.
- Nestby R., Lieten F., Pivot D., Raynal Lacroix C., Tagliavini M. and Evenhuis B. Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs. Acta Hort. 2004;(649):201–206.
- Taiz L and Zeiger E. Mineral nutrition. In: Plant Physiology. Third ed. Sinauer Associates Inc. Massachusetts. USA. 2002. P. 67–86.
- Hindersah R., Purba P.S.J., Cahyaningrum D.N., Nurbaity A., Kamaluddin N.N., & Akutsu M. Evaluation of strawberry seedling growth in various planting media amended with biofertilizer. KnE Life Sciences. 2022. P. 358–367. https://dx.doi.org/10.18502/kls.v7i3.11144
- Abobatta F., Abd Alla M.A. Role of phosphates fertilizers in sustain horticulture production: Growth and productivity of vegetable crops. Asian Journal of Agricultural Research. 2023;17(1):1–7. – https://doi.org/10.3923/ajar.2023.1.7
- Cao F., Guan Ch., Dai H., Li X., Zhang Zh. Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Scientia Horticulturae. 2015;(195):183–187.
- Moor U., Põldma P., Tõnutare T., Karp K., Starast M., Vool E. Effect of phosphite fertilization on growth, yield and fruit composition of strawberries. Scientia Horticulturae. 2009;119(3):264–269.
- Ahmad H., Sajid M., Ullah R., Hayat S. and Shahab M. Dose Optimization of Potassium (K) for Yield and Quality Increment of Strawberry (Fragaria ×ananassa Duch) Chandler. American Journal of Experimental Agriculture. 2014;4(12):1526-1535.
- Schwarz K., Vilela-Resende J.T., Pierozan-Junior C., Tauffer-de-Paula J., Baier J.E., de Souza-Silva M.L., Brendler-Oliveira F. Yield and nutrition of greenhouse- grown strawberries (Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier. cv. Camarosa) as affected by potassium fertilization. Acta Agron. 2018;(67):114–119. https://doi.org/10.15446/acag.v67n1.59553
- Szczerbab M.W., Brittoa D.T., Kronzuckera H.J. K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology. 2009;166(5):447–466. https://doi.org/10.1016/j.jplph.2008.12.009
- Preciado-Rangel P., Troyo-Diéguez E., Valdez-Aguilar L.A., García- Hernández J.L. and Luna-Ortega J.G. Interactive Effects of the Potassium and Nitrogen relationship on Yield and Quality of Strawberry grown under Soilless Conditions. Plants. 2020;9(4):441. https://doi.org/10.3390/plants9040441
- Yi W., Wei-Hua W. Potassium transport and signaling in higher plants. Potassium Transport and Signaling in Higher Plants. 2013;(64):51–76. https://doi.org/10.1146/annurev-arplant-050312-120153
- Khayyat M., Tafazoli E., Eshghi S., Rahemi M., Rajaee S. Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Am. Eurasian J. Agric. Environ. Sci. 2007;(2):539–544. https://www.idosi.org/aejaes/jaes2(5)/13
- Gomes E.R., Broetto F., Queluz J. G. T., Bressan D.F. Effect of potassium fertigation on soil and strawberry yield. Irriga, Botucatu, Edição Especial. 2015. 20 anos Irriga + 50 anos FCA. P. 107–122.
- Nakro A., Bamouh A., Bouslama H., San Bautista A., Ghaouti L. The Effect of Potassium–Nitrogen Balance on the Yield and Quality of Strawberries Grown under Soilless Conditions. Horticulturae. 2023;(9):304. https://doi.org/10.3390/horticulturae9030304
- Cakmak I., Yazici A.M. Magnesium: a forgotten element in crop production. Better Crops. 2010;94(2):23–25.
- Аристархов А.Н. Оптимизация питания растений и применения удобрений в агроэкосистемах. М.: ЦИНАО, 2000. 524 с. [Aristarhov A.N. Optimization of plant nutrition and fertilizer application in agroecosystems. M.: CINAO, 2000. 524 p.] (In Russ.)
- Cakmak I., Kirkby E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008;(133):692–704.
- Romheld V., Kirkby E.A. Magnesium function in crop nutrition and yield. Proceedings of a Conference in Cambridge (7th Dec. 2007). 2007. Р. 151–171.
- Khalil N.H., Hammoodi Effect of nitrogen, potassium and calcium in strawberry fruit quality. International Journal of Agricultural and Statistical Sciences. 2020;16(1):1967–1972. https://connectjournals.com/03899.2020.16.1967
- Lateef M.A., Noori A.M., Saleh Yu.M. and Al-Taey D.K.A. The effect of foliar spraying with salicylic acid and calcium chloride on the growth, yield, and storage traits of two strawberry cultivars, Fragaria × ananassa Duch. Int. J. Agricult. Stat. Sci. 2021;17(2):611–615. https://connectjournals.com/03899.2021.17.611.
- Bieniasz M., Małodobry M., Dziedzic E. The effect of foliar fertilization with calcium on quality of strawberry cultivars 'Luna' and 'Zanta'. Acta Horticulturae. 2012;926(926)?457–461. https://doi.org/10.17660/ActaHortic.2012.926.64.
- Sidhu R.S., Singh N.P., Sngh S. and Sharda R. Foliar Nutrition with Calcium Nitrate in Strawberries (Fragaria × ananassa Duch.): Effect on Fruit Quality and Yield. Indian Journal of Ecology. 2020;47(1):87–91.
- Ruchitha T., Shivakumar B.S., Madaiah D., Ganapathi M., Chaitanya H.S. Influence of foliar nutrients and plant growth regulators on growth and yield of strawberry (Fragaria× ananassa Duch.) under naturally ventilated polyhouse. Journal of Pharmacognosy and Phytochemistry. 2020;9(4):720–1723.
- Pandeya S., Shrestha A.K. Effect of pre-harvest spray of calcium on post-harvest quality of strawberry (Fragaria × ananassa Duch.) cv. Winter dawn in Chitwan, Nepal. Malaysian Journal of Halal Research (MJHR). 2023;6(1):25–31. https://doi.org/10.26480/mjhr.01.2023.25.31
- Zhang X., Zhang D., Sun W., Wang T. The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int. J. Mol. Sci. 2019;(20):2424. https://doi.org/10.3390/ijms20102424
- Zhao L., Wang Yu., Kong Sh. Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. International Microbiology. 2020;(23):501–509. https://doi.org/10.1007/s10123-020-00122-4
- Puglisi I., Brida S., Stoleru V., Torino V., Sellitto V.M., Baglieri A. Application of novel microorganism-based formulations as alternative to the use of iron chelates in strawberry cultivation. Agriculture. 2021;(11):217. https://doi.org/10.3390/agriculture11030217
- Duralijaa B., Mikec D., Jurić S., Lazarević B., Maslov Bandić L., Vlahoviček- Kahlina K., Vinceković M. Strawberry fruit quality with the increased iron application. SHS Acta Horticulturae. IX International Strawberry Symposium. 2021. P. 1309. https://doi.org/10.17660/ActaHortic.2021.1309.146
- Saini S., Kumar P., Sharma N.C., Sharma N., Balachandar D. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria × ananassa Duch.). Scientia Horticulturae. 2021;(282):110016. https://doi.org/10.1016/j.scienta.2021.110016
- Carlesso L.C., Luz G.L.D., Lajus C.R., Silva L.L., Fiori M., Rossoni C., Fernandes S.C., Riella H. Physical-chemical properties of strawberry pseudo fruits submitted to applications of zinc oxide nanoparticles. Int. J. Adv. Res. Technol. 2018;(5):262–272. https://dx.doi.org/10.22161 /ijaers.5.7.34
- Elahshah A.A., Moradi H., Sadeghi H. Boron and zinc foliar application enhanced the morphophysiological responses and mineral absorption in the hydroponically grown ‘Aromas’ strawberry. Journal of Plant Nutrition. 2023;46(11):1–12. https://doi.org/10.1080/01904167.2023.2206428
- Rossiac L., Fedenia N., Sharifana H., Ma X., Lombardini L. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry. 2019;(135):160–166. https://doi.org/10.1016/j.plaphy.2018.12.005
- Park Y.G., Muneer S., Kim S., Hwang S.J., and Jeong B.R. Silicon application during vegetative propagation affects photosynthetic protein expression in strawberry. Hortic. Environ. Biotechnol. 2018;(59):167–177. https://doi.org/10.1007/s13580-018-0022-2
- Pavlovic J., Kostic L., Bosnic P., Kirkby E.A., and Nikolic M. Interactions of silicon with essential and beneficial elements in plants. Front. Plant Sci. 2021;(12):1224. https://doi.org/10.3389/fpls.2021.697592
- Moradtalab N., Hajiboland R., Aliasgharzad N., Hartmann T.E., and Neumann G. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy. 2019;(9):41. https://doi.org/10.3390/agronomy9010041
- Sattar A., Cheema M.A., Sher A., Ijaz M., Wasaya A., Yasir T.A. Foliar applied silicon improves water relations, stay green and enzymatic antioxidants activity in late sown wheat. Silicon. 2020;(12):223–230. https://doi.org/10.1007/s12633-019-00115-7
- Kowalska J., Tyburski J., Jakubowska M., and Krzymińska J. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon. 2021;(13):211–217. https://doi.org/10.1007/s12633-020-00414-4
- Xiao J., Li. Ya., Jeong B.R. Foliar Silicon Spray to Strawberry Plants During Summer Cutting Propagation Enhances Resistance of Transplants to High Temperature Stresses. Front. Sustain. Food Syst., 27 June Sec. Crop Biology and Sustainability. 2022;(6). https://doi.org/10.3389/fsufs.2022.938128
- Javier F.P.-F., Gil Ya.B., Apaolazaa L.H. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiology and Biochemistry. 2020;(152):23–31. https://doi.org/10.1016/j.plaphy.2020.04.026
- Li L., Wei X., Mei-ling J., Chao Y., Ling L., Dong-sheng G., Xi-ling F. Effects of molybdenum on nutrition, quality, and flavour compounds of strawberry (Fragaria × ananassa Duch. cv. Akihime) fruit. Journal of Integrative Agriculture. 2017;16(7): 1502–1512. https://doi.org/10.1016/S2095-3119(16)61518-6