Роль стволовых опухолевых клеток в канцерогенезе и прогнозе меланомы
Автор: Чулкова С.В., Маркина И.Г., Антипова А.С., Грищенко Н.В., Пустынский И.В., Егорова А.В., Рябчиков Д.А., Синельников И.Е.
Журнал: Вестник Российского научного центра рентгенорадиологии Минздрава России @vestnik-rncrr
Рубрика: Обзоры
Статья в выпуске: 4 т.18, 2018 года.
Бесплатный доступ
Резюме Несмотря на существенные достижения современной медицины в ранней диагностике онкологических заболеваний, меланома кожи остается одной из ведущих причин смертности во всем мире: каждый 3-й случай меланомы заканчивается быстрым летальным исходом. Высокая частота прогрессирования является одной из основных проблем в лечении меланомы, поскольку она резистентна к традиционным видам лекарственного лечения. Исследованиями последних лет установлено, что рост и прогрессирование многих видов злокачественных опухолей, в том числе и меланомы, обусловлены небольшими субпопуляциями клеток, которые называют опухолевыми стволовыми клетками (ОСК). ОСК на своей поверхности несут специфические маркеры, экспрессия которых может быть непостоянной и зависеть от факторов микроокружения, поэтому изучение особенностей фенотипа ОСК и их микросреды позволяет понять процессы меланомогенеза и найти возможные пути влияния на ОСК с целью преодоления лекарственной устойчивости меланомы. Данная статья посвящена обзору теоретических предпосылок и практических результатов исследований роли опухолевых стволовых клеток в канцерогенезе меланомы кожи. Проведен анализ современных литературных данных значимости опухолевых 101 стволовых клеток как прогностического фактора и как потенциальной мишени таргентной терапии при меланоме.
Опухолевые стволовые клетки, маркеры опухолевых стволовых клеток, меланома, лекарственная резистентность, таргентная терапия, нмв45, экспрессия стволовоклеточных маркеров
Короткий адрес: https://sciup.org/149132076
IDR: 149132076
Список литературы Роль стволовых опухолевых клеток в канцерогенезе и прогнозе меланомы
- Al-Hajj M., Wicha M.S., Benito-Hernandez A., et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003. V. 100. No. P. 3983-3988.
- Balch C.M., Soong S.J., Gershenwald J.E., et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001. V. 19. No. 16. P. 3622-3634.
- Bergman R., Dromi R., Trau H., et al. The pattern of HMB-45 antibody staining in compound Spitz nevi. Am J Dermatopathol. 1995. V. 17. No. 6. P. 542-546.
- Berson J.F., Harper D.C., Tenza D., et al. Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell. 2001. V. 12. P. 3451-3464.
- Bhatia S., Tykodi S.S., Thompson J.A. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009. V. 23. No. 6. P. 488-496.
- Boiko A.D., Razorenova O.V., van de Rijn M., et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010. V. 466. No. 7302. P. 133-137.
- Chakraborty A.K., Platt J.T., Kim K.K., et al. Polymerization of 5,6-dihydroxyindole-2- carboxylic acid to melanin by the pmel 17/silver locus protein. Eur J Biochem. 1996. V. 236. No. 1. P. 180-188.
- Civenni G., Walter A., Kobert N., et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 2011. V. 71. No. 8. P. 3098-3109.
- Collins A.T., Berry P.A., Hyde C., et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005. V. 65. No. 23. P. 10946-10951.
- Demou Z.N., Hendrix M.J. Microgenomics profile the endogenous angiogenic phenotype in subpopulations of aggressive melanoma. J Cell Biochem. 2008. V. 105. No. 2. P. 562-573.
- Fang D., Nguyen T.K., Lishear K., et al. A tumorigenic subpopulation with stem cell property in melanomas. Cancer Res. 2005. V. 65. No. 20. P. 9228-9237.
- Frank N.Y., Margaryan A., Huang Y., et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 2005. V. 65. No. 10. P. 4320- 4333.
- Fukunaga-Kalabis M., Roesch A., Herlyn M. From cancer stem cells to tumor maintenance in melanoma. J Invest Dermatol. 2011. V. 131. No. 8. P. 1600-1604.
- Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011. V. 144. No. 5. P. 646-674.
- Hendrix M.J., Seftor E.A., Hess A.R., Seftor R.E. Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nature Rev Cancer. 2003. V. 3. No. 6. P. 411-421.
- Hendrix M.J., Seftor E.A., Meltzer P.S., et al. Expression and functional significance of VE- cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci US A. 2001. V. 98. No. 14. P. 8018-8023.
- Hendrix M.J., Seftor R.E., Seftor E.A., et al. Transendothelial function of human metastatic melanoma cells: Role of the microenvironment in cell-fate determination. Cancer Res. 2002. V.62. No. P. 665-668.
- Hoek K.S., Eichhoff O.M., Schlegen N.C., et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008. V. 68. No. 3. P. 650-656.
- Iwamoto S., Odland P.B., Piepkorn M., Bothwell M. Evidence that the p75 neurotrophin receptor mediates perineural spread of desmoplastic melanoma. J Am Acad Dermatol. 1996. V.35. No. 5 (Pt 1). P. 725-731.
- Jain D., Singh T., Kumar N. Daga M.K. Metastatic malignant melanoma in bone marrow with occult primary site-a case report with review of literature. Diagn Pathol. 2007. V. 2. P. 38.
- Karimkhani C., Green A.C., Nijsten T., et al. The global burden of melanoma: results from the Global Burden of Disease study 2015. Br J Dermatol. 2017. V. 177. No. 1. P. 134-140.
- Kemper K., De Goeje P.L., Peeper D.S., Van Amerongen R. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res. 2014. V. 74. No. 21. P. 5937-5941.
- Klein W.M., Wu B.P., Zhao S., et al. Increased expression of stem cell markers in malignant melanoma. Mod Pathol. 2007. V. 20. No. 1. P. 102-107.
- Kwon B.S., Halaban R., Ponnazhagan S., et al. Mouse silver mutation is caused by a single base insertion in the putative cytoplasmic domain of Pmel 17. Nucleic Acids Res. 1995. V. 23. No. 1. P. 154-158.
- Lai C.Y., Schwartz B.E., Shu M.Y. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res. 2012. V. 72. No. 19. P. 5111-5118.
- Lang D., Masatolcarenhas J.B., Shea C.R. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 2013. V. 31. No. 2. P. 166-178.
- Lazzaro B., Elder D.E., Rebers A., et al. Immunophenotyping of compound and spitz nevi and vertical growth-phase melanomas using a panel of monoclonal antibodies reactive in paraffin sections. J Invest Dermatol. 1993. V. 100. No. 3. P. 313S-317S.
- Lehraiki A., Cerezo M., Rouaud F., et al. Increased CD271 expression by the NF-kB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discov. 2015. V. 1. Article ID 15030.
- Monzani E., Facchetti.F, Galmozzi E., et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007. V. 43. No. 5. P. 935-946.
- Niezabitowski A., Czajecki K., Rys J., et al. Prognostic evaluation of cutaneous malignant melanoma: a clinicopathologic and immunohistochemical study. J Surg Oncol. 1999. V. 70. No. 3. P. 150-160.
- O'Brien C.A., Pollett A., Gallinger S., Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007. V. 445. No. 7123. P. 106-
- Pinc A., Somasundaram R., Wagner C., et al. Targeting CD20 in Melanoma Patients at High Risk of Disease Recurrence. Mol Ther. 2012. V. 20. No. 5. P. 1056-1062.
- Quintana E., Shackleton M., Foster H.R., et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell. 2010. V. 18. No. 5. P. 510-523.
- Quintana E., Shackleton M., Sabel M.S., et al. Efficient tumour formation by single human melanoma cells. Nature. 2008. V. 456. No. 7222. P. 593-598.
- Rappa G., Fodstad O., Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells. 2008. V. 26. No. 12. P. 3008-3017.
- Restivo G., Diener J., Cheng P.F., et al. Publisher correction: The low affinity neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun. 2017. V. 9. No.1.P. 314.
- Ricci-Vitiani L., Lombardi D.G., Pilozzi E., et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007. V. 445. No. 7123. P. 111-115.
- Rocken M. Early tumor dissemination, but late metastasis: insights into tumor dormancy. J Clin Invest. 2010. V. 120. No. 6. P. 1800-1803.
- Schatton T., Murphy G.F., Frank N.Y., et al. Identification of cells initiating human melanomas. Nature. 2008. V. 451. No. 7176. P. 345-349.
- Schatton T., Frank M.H. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res. 2008. V. 21. No. 1. P. 39-55.
- Schlaak M., Schmidt P., Bangard C., et al. Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget. 2012. V. 3. No.1. P. 22-30.
- Schlegel N.C., von Planta A., Widmer D.S., et al. PI3K signalling is required for a TGFβ- induced epithelial-mesenchymal-like transition (EMT-like) in human melanoma cells. Exp Dermatol. 2015. V. 24. No. 1. P. 22-28.
- Singh S.K., Hawkins C., Clarke I.D., et al. Identification of human brain tumour initiating cell. Nature. 2004. V. 432. No. 7015. P. 396-401.
- Singh S.K., Clarke I.D., Terasaki M., et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003.V. 63. No. 18. P. 5821-5828.
- Stemple D.L., Anderson D.J. Isolation of a stem Cell for neurons and glia from the mammalian neural crest. Cell. 1992. V. 71. No. 6. P. 973-985.
- Strizzi L., Hardy K.M., Kirsammer G.T., et al. Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab Invest. 2011. V. 91. No. 6. P. 819-824.
- Trotter S.C., Sroa N., Winkelmann R.R., et al. A Global Review of Melanoma Follow-up Guidelines. J Clin Aesthet Dermatol. 2013. V. 6. No. 9. P. 18-26.
- Wang Z., Ouyang G. Periostin: a bridge between cancer stem cells and their metastatic niche. Cells Stem Cells. 2012. V. 10. No. 2. P.111-112.
- Yee V.S., Thompson J.F., McKinnon J.G., et al. Outcome in 846 cutaneous melanoma patients from a single center after a negative sentinel node biopsy. Ann Surg Oncol. 2005. V. 12. No. 6. P. 429-439.