Sampling rate error in acoustic measurements
Автор: Patrick J., Don A., John T., Korman Valentin
Журнал: Техническая акустика @ejta
Статья в выпуске: т.6, 2006 года.
Бесплатный доступ
Two aspects of data collection and analysis are considered in the paper: the transfer function of the detector and the sampling method used on the data the detector reports. Following a brief look at transfer function theory, a simple model is constructed which shows the effect of sampling time dependent functions (acoustic or otherwise) at different rates. The average value of a time dependent parameter (pressure for example) is calculated to illustrate the analysis method. Four different type functions were chosen to represent the parameter: sinusoidal, pseudo-sinusoidal, asymmetric triangular, and random. The results illustrate the important role played by sampling rate when analyzing time dependent data.
Короткий адрес: https://sciup.org/14316067
IDR: 14316067
Список литературы Sampling rate error in acoustic measurements
- Halliday D., Resnick R., Walker J. Fundamentals of Physics, John Wiley and Sons, 5th ed., 1997.
- Ono T., Yamaguchi K., Suzuki H., Kawaura J., Ohashi, M. A New Error Index for the Determination of the Number of Averages in Transfer Function Estimation. Appl. Acoustics, vol. 28, issue 1, 1989, p. 21.
- Poularikas A., Seely S. Properties of Delta Functions. Signals and Systems, 2nd ed., Krieger Publishing, Boston, 1991, pp. 690-694.
- Goodman J. Fourier Optics. McGraw-Hill Publishing, New York, 2nd ed., 1996, pp. 21-22.
- Hecht, E. Optics. Addison-Wesley Publishing, 4th ed., 2002.
- Randall R., Tech B. Application of B&K Equipment to Frequency Analysis. Bruel & Kjaer, Denmark, 2nd ed., 1977.
- Yamaguchi S., Kato Y. A Statistical Study for Determining the Minimum Sample Size Leq Estimation of Periodic Nonstationary Random Noise. Appl. Acoustics, vol. 32, issue 1, 1991, p 35.
- Moler Cleve. Ziggurat Algorithm Generates Normally Distributed Random Numbers. Matlab News and Notes, The Mathworks, Spring, 2001.