Сейсмостойкие каркасы промышленных зданий с энергопоглотителями
Автор: Белов В.В., Верховский Р.Д., Николаев Г.А., Михеев С.А.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Объектом исследования является сейсмостойкость промышленных зданий с каркасной конструктивной схемой. Повышение сейсмостойкости, особенно для энергетических объектов, является перспективным. С изменением нормативно-технической базы Российской Федерации необходим поиск и анализ новых вариантов конструкций, которые бы повысили живучесть здания и при этом были экономически обоснованы. Поэтому в данной работе рассматривается применение методов повышения сейсмостойкости за счет элементов для поглощения колебательной энергии при реализации специального сейсмического воздействия, работающих упругопластически.
Сейсмостойкость, промышленные здания, поглотители энергии, живучесть стального каркаса, численный анализ, главный корпус ТЭС, пластические деформации
Короткий адрес: https://sciup.org/143182718
IDR: 143182718 | DOI: 10.4123/CUBS.109.25
Список литературы Сейсмостойкие каркасы промышленных зданий с энергопоглотителями
- SP 14.13330.2018. Seismic Building Design Code. https://docs.cntd.ru/document/550565571.
- Decree of the Government of the Russian Federation No. 309 of 15.04.2014 "On approval of the State Program of the Russian Federation "Development of the North Caucasus Federal District" (as amended on September 29, 2023). https://docs.cntd.ru/document/499091772.
- Decree of the Government of the Russian Federation No. 2464-р dated 24.09.2020 "On approval of the National Program of socio-economic development of the Far East for the period up to 2024". https://docs.cntd.ru/document/565853199.
- Fastova, A.A. and Belov, V.V. (2021) Assessment of the radius of the zone of influence on foundations during the construction of thermal power plants in queues. Industrial and civil engineering, 7, 58-69. elibrary_46478896_58408181.pdf.
- Belov, V.V. and Pergamenshchik, B.K. (2013) Large-scale accidents at thermal power plants (TPP) and their influence on equipment layouts inside main buildings. Vestnik MGSU, 4, 61-69. https://cyberleninka.ru/article/n/krupnye-avarii-na-tes-i-ih-vliyanie-na-komponovochnye-resheniya-glavnyh-korpusov-1.
- Freddi, F., Galasso, C., Cremen, G., Dall'Asta, A., Luigi Di Sarno, Giaralis, A., Gutierrez-Urzúa, F., Malaga-Chuquitaype, C., Mitoulis, S.A., Petrone, C., Sextos, A., Sousa, L., Tarbali, K., Tubaldi, E., Wardman, J. and Woo, G. (2021) Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 60, 102267. https://doi.org/10.1016/j.ijdrr.2021.102267.
- Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G.A. and Eatherton M.R. (2022) Seismic resilient steel structures: A review of research, practice, challenges and opportunities. Journal of Constructional Steel Research, 191, 107172. https://doi.org/10.1016/j.jcsr.2022.107172.
- Esteghamati, M.Z. and Farzampour, A. (2020) Probabilistic seismic performance and loss evaluation of a multi-story steel building equipped with butterfly-shaped fuses. Journal of Constructional Steel Research, 172, 106187. https://doi.org/10.1016/j.jcsr.2020.106187.
- Li, S., Sun, C., Li, X., Tian, J. and Gao, D. (2021) Seismic design lateral force distribution based on inelastic state of K-eccentric brace frames combined with high strength steel. Structures, 29, 1748-1762. https://doi.org/10.1016/j.istruc.2020.12.046.
- Wang, J. and Li, B. (2022) Seismic fragility analysis of CFT frames with buckling-restrained braces and steel braces under long- and short-duration ground motions. Structures, 39, 848-865. https://doi.org/10.1016/j.istruc.2022.03.078.
- Pratap, M. and Vesmawala, G.R. (2023) The State-of-the-art review on development of replaceable fuse components in resilient moment resisting frame. Structures, 56, 104888. https://doi.org/10.1016/j.istruc.2023.104888.
- Li, J. and Wang, W. (2022) Seismic design of low-rise steel building frames with self-centering hybrid damping connections. Resilient Cities and Structures, 1, 10-22. https://doi.org/10.1016/j.rcns.2022.06.002.
- Zheng, L., Dou, S., Wang, W., Ge, H., Gao, Y. and Han, Y. (2022) Seismic performance of braced frame with double round steel tube. Journal of Constructional Steel Research, 193, 107297. https://doi.org/10.1016/j.jcsr.2022.107297.
- Oh, S. and Park, H. (2022) Experimental study on seismic performance of steel slit damper under additional tensile load. Journal of Building Engineering, 50, 104110. https://doi.org/10.1016/j.jobe.2022.104110.
- Jiang, Z., Yang, X., Zhang, A., Hua, X. and Chen, X. (2022) Design theory of earthquake-resilient prefabricated column foot joint with lateral force-resisting energy-consuming device. Journal of Constructional Steel Research, 198, 107439. https://doi.org/10.1016/j.jcsr.2022.107439.
- Rinaldin, G., Fasan, M., Sancin, L. and Amadio, C. (2020) On the behaviour of steel CBF for industrial buildings subjected to seismic sequences. Structures, 28, 2175-2187. https://doi.org/10.1016/j.istruc.2020.10.050.
- Bomben, L., Fasan, M. and Amadio, C. (2023) Assessment of the effect of seismic sequences on steel X-CBF for industrial buildings. Procedia Structural Integrity, 44, 99-106. https://doi.org/10.1016/j.prostr.2023.01.014.
- Li, J., Wang, W. and Qu, B. (2020) Seismic design of low-rise steel building frames with self-centering panels and steel strip braces. Engineering Structures, 216, 110730. https://doi.org/10.1016/j.engstruct.2020.110730.
- SP 20.13330.2016. Loads and Actions. https://docs.cntd.ru/document/456044318.
- SP 90.13330.2012. Thermal Power Stations. https://docs.cntd.ru/document/1200095533.
- SP 16.13330.2017. Steel Structures. https://docs.cntd.ru/document/456069588.
- Rigi, A., JavidSharifi, B., Hadianfard, M.A. and Yang, T.Y. (2021) Study of the seismic behavior of rigid and semi-rigid steel moment-resisting frames. Journal of Constructional Steel Research, 186, 106910. https://doi.org/10.1016/j.jcsr.2021.106910.
- Park, H.Y. and Oh, S.H. (2019) Design range of the damper of a T-stub damage-controlled system. Journal of Constructional Steel Research, 162, 105719. https://doi.org/10.1016/j.jcsr.2019.105719.
- Wang, M. and Ke, X. (2020) Seismic design of widening flange connection with fuses based on energy dissipation. Journal of Constructional Steel Research, 170, 106076. https://doi.org/10.1016/j.jcsr.2020.106076.
- Wang, M. and Bi, P. (2019) Study on seismic behavior and design method of dissipative bolted joint for steel frame with replaceable low yield point steel connected components. Construction and Building Materials, 198, 677-695. https://doi.org/10.1016/j.conbuildmat.2018.11.255.
- Wang, M., Zhang, C., Sun, Y. and Dong, K. (2022) Seismic performance of steel frame with replaceable low yield point steel connection components and the effect of structural fuses. Journal of Building Engineering, 47, 103862. https://doi.org/10.1016/j.jobe.2021.103862.
- Lin, X., Li, H., He, L. and Zhang, L. (2022) Experimental study on seismic behavior of the damage-control steel plate fuses for beam-to-column connection. Engineering Structures, 270, 114862. https://doi.org/10.1016/j.engstruct.2022.114862.
- Chen, P., Pan, J., Hu, F. and Wang, Z. (2022) Numerical investigation on seismic resilient steel beam-to-column connections with replaceable buckling-restrained fuses. Journal of Constructional Steel Research, 199, 107598. https://doi.org/10.1016/j.jcsr.2022.107598.
- Ghadami, A., Pourmoosavi, Gh., Talatahari, S. and Azar, B.F. (2021) Overstrength factor of short low-yield-point steel shear links. Thin-Walled Structures, 161, 107473. https://doi.org/10.1016/j.tws.2021.107473.
- Park, H.Y., Kim, J. and Kuwahara, S. (2021) Cyclic behavior of shear-type hysteretic dampers with different cross-sectional shapes. Journal of Constructional Steel Research, 187, 106964. https://doi.org/10.1016/j.jcsr.2021.106964.
- Tashakori, J., Razzaghi, J. and Ansari, S. (2019) Reassessment of current design criteria of plastic hinges in shear links. Journal of Constructional Steel Research, 158, 350-365. https://doi.org/10.1016/j.jcsr.2019.04.006.
- Yin, Z., Yang, B. and Zhang, X. (2022) Design of an eccentrically buckling-restrained braced steel frame with web-bolted replaceable links. Journal of Constructional Steel Research, 192, 107250. https://doi.org/10.1016/j.jcsr.2022.107250.
- Li, T., Su, M. and Guo, J. (2022) A plastic design method based on multi-objective performance for high-strength steel composite K-shaped eccentrically braced frame, Journal of Constructional Steel Research, 198, 107562. https://doi.org/10.1016/j.jcsr.2022.107562.
- Zhuang, L., Wang, J., Nie, X. and Wu, J. (2022) Experimental study on seismic behaviour of eccentrically braced composite frame with vertical LYP steel shear link. Engineering Structures, 255, 113957. https://doi.org/10.1016/j.engstruct.2022.113957.
- Wijaya, H., Rajeev, P., Gad, E., and Amirsardari, A. (2019) Effect of hysteretic steel damper uncertainty on seismic performance of steel buildings. Journal of Constructional Steel Research, 157, 46-58. https://doi.org/10.1016/j.jcsr.2019.02.016.
- Nuzzo, I., Losanno, D., Caterino, N., Serino, G. and Rotondo, L.M.B. (2018) Experimental and analytical characterization of steel shear links for seismic energy dissipation. Engineering Structures, 172, 405-418. https://doi.org/10.1016/j.engstruct.2018.06.005.
- SP 294.1325800.2017. The Construction of Steel. Design Rules. https://docs.cntd.ru/document/456088764.
- Design and estimate manual for multistory buildings steel earthguake resistant frameworks. (for SNiP 2/03-04-2001 explanation), part 1. https://studylib.ru/doc/2611263/posobie-po-raschetu-i-konstruirovaniyu-stal._nyh.
- Tabatchikova T.I., Delgado Reina S.Y., Yakovleva I.L., Nosov A.D., Goncharov S.N., Gudnev N.Z. (2014) Structure and ductility of the heat-affected zone of welded joints of a high-strength steel. The Physics of Metals and Metallography, 115, 1241-1248. https://doi.org/10.1134/S0031918X14120072.