Сексуальная активность и болезнь Альцгеймера: инструменты и технологии нейроэндокринной реабилитации

Автор: Булгакова Светлана Викторовна, Романчук Наталья Петровна

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 7 т.8, 2022 года.

Бесплатный доступ

Болезнь Альцгеймера - это эволюционная, генетическая и эпигенетическая маршрутизация Homo sapiens , с внедрением реабилитационной программы «БАЯМ-365/22/77» (Alzheimer’s disease & nuclear medicine) и медико-социальными нейрокоммуникациями и сопровождениями. Геронтология и гериатрия, гинекология/андрология и нейроэндокринология, нейрофизиология и нейросоциология маршрутизируют H. sapiens в активное / здоровое / качественное / религиозное / нравственное / сексуальное / нейрокоммуникативное долголетие . Огромный прирост научных данных, полученных как в доклинических, так и в клинических исследованиях, сокращает большой пробел в знаниях о специфических для пола особенностях течения многих заболеваний (нейродегенеративных, психических, аутоиммунных, онкологических, сердечно-сосудистых, инфекционных). Тем не менее, остаются до конца не изучены факторы, определяющие половые различия в эпидемиологии, патофизиологии, клинической картине, исходах ряда патологий. В настоящем обзоре литературе представлен анализ современных исследований, посвященных роли гормональной регуляции в гендерной медицине и гендерным особенностям в ключевых клинических областях. Половые различия в иммунном ответе, сердечно-сосудистых заболеваниях, неврологических расстройствах, COVID-19 описаны в данной статье. Показано, что в настоящее время созрели все предпосылки для формирования персонализированных подходов в клинической медицине и общественном здравоохранении для улучшения качества жизни пациентов и здоровья населения в целом.

Еще

Болезнь альцгеймера, генетика, гендерная медицина, эстрогены, когнитивное здоровье

Короткий адрес: https://sciup.org/14124448

IDR: 14124448   |   DOI: 10.33619/2414-2948/80/21

Список литературы Сексуальная активность и болезнь Альцгеймера: инструменты и технологии нейроэндокринной реабилитации

  • Bhargava A. Considering sex as a biological variable in basic and clinical studies: an endocrine society scientific statement // Endocrine reviews. 2021. V. 42. №3. P. 219 258. https://doi.org/10.1210/endrev/bnaa034
  • Булгакова С. В., Романчук Н. П., Волобуев А. Н. Новая личность и нейрокоммуникации: нейрогенетика и нейросети, психонейроиммуноэндокринология, 5P медицина и 5G технологии // Бюллетень науки и практики. 2021. Т. 7. №8. С. 202 240. https://doi.org/10.33619/2414 2948/69/26
  • Tokatli M. R. Hormones and sex specific medicine in human physiopathology // Biomolecules. 2022. V. 12. №3. P. 413.
  • Волобуев А. Н., Романчук Н. П., Булгакова С. В. Нейрогенетика мозга: сон и долголетие человека // Бюллетень науки и практики. 2021. Т. 7. №3. С. 93 135. https://doi.org/10.33619/2414 2948/64/12
  • Hiort O., Paul Martin H. The molecular basis of male sexual differentiation // European journal of endocrinology. 2000. V. 142. №2. P. 101 110.
  • Veldhuijzen D. S. The role of circulating sex hormones in menstrual cycle dependent modulation of pain related brain activation // Pain. 2013. V. 154. №4. P. 548 559.
  • Булгакова С. В. Эндокринная система и старение организма человека // Клиническая геронтология. 2020. Т. 26. №7 8. С. 51 56.
  • Wittert G. The relationship between sleep disorders and testosterone in men // Asian journal of andrology. 2014. V. 16. №2. P. 262. https://doi.org/10.4103%2F1008 682X.122586
  • Schipper H. M. The impact of gonadal hormones on the expression of human neurological disorders // Neuroendocrinology. 2016. V. 103. №5. P. 417 431. https://doi.org/10.1159/000440620
  • Пятин В. Ф., Романчук Н. П., Булгакова С. В., Романов Д. В., Сиротко И. И., Давыдкин И. Л., Волобуев А. Н. Циркадианный стресс Homo sapiens: новые нейрофизиологические, нейроэндокринные и психонейроиммунные механизмы // Бюллетень науки и практики. 2020. Т. 6. №6. С. 115 135. https://doi.org/10.33619/2414 2948/55/16
  • Reddy D. S., Bakshi K. Neurosteroids: Biosynthesis, molecular mechanisms, and neurophysiological functions in the human brain // Hormonal Signaling in Biology and Medicine. Academic Press, 2020. P. 69 82. https://doi.org/10.1016/B978 0 12 813814 4.00004 3
  • Rey R., Josso N., Racine C. Sexual differentiation // Endotext [Internet]. 2020.
  • Maekawa F. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes // Frontiers in neuroscience. 2014. V. 8. P. 242. https://doi.org/10.3389/fnins.2014.00242
  • Arnold A. P. Sex chromosomes and brain gender // Nature Reviews Neuroscience. 2004. V. 5. №9. P. 701 708. https://doi.org/10.1038/nrn1494
  • Булгакова С. В., Романчук Н. П. Половые гормоны и когнитивные функции: современные данные // Бюллетень науки и практики. 2020. Т. 6. №3. С. 69 95. https://doi.org/10.33619/2414 2948/52/09
  • Warfvinge K. Estrogen receptors α, β and GPER in the CNS and trigeminal system molecular and functional aspects // The Journal of Headache and Pain. 2020. V. 21. №1. P. 1 16.
  • Delchev S., Georgieva K. Cellular and molecular mechanisms of the effects of sex hormones on the nervous system // Sex Hormones in Neurodegenerative Processes and Diseases. 2018. P. 1 19.
  • Xu S. G protein coupled estrogen receptor: a potential therapeutic target in cancer // Frontiers in Endocrinology. 2019. V. 10. P. 725.
  • Notas G., Kampa M., Castanas E. G protein coupled estrogen receptor in immune cells and its role in immune related diseases // Frontiers in endocrinology. 2020. V. 11. P. 579420. https://doi.org/10.3389/fendo.2019.00725
  • Eisinger K. R. T. Interactions between estrogen receptors and metabotropic glutamate receptors and their impact on drug addiction in females // Hormones and behavior. 2018. V. 104. P. 130 137.
  • Mishra K. N., Moftah B. A., Alsbeih G. A. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures // Biomedicine & Pharmacotherapy. 2018. V. 106. P. 610 617. https://doi.org/10.1016/j.biopha.2018.06.150
  • Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., Montoro A. Radioprotection and radiomitigation: from the bench to clinical practice // Biomedicines. 2020. V. 8. №11. P. 461. https://doi.org/10.3390/biomedicines8110461
  • Романчук Н. П., Булгакова С. В., Тренева Е. В., Волобуев А. Н., Кузнецов П. К. Нейрофизиология, нейроэндокринология и ядерная медицина: маршрутизация долголетия Homo sapiens // Бюллетень науки и практики. 2022. Т. 8. №4. С. 251 299. https://doi.org/10.33619/2414 2948/77/31
  • Smith T. A., Kirkpatrick D. R., Smith S., Smith T. K., Pearson T., Kailasam A., Agrawal D. K. Radioprotective agents to prevent cellular damage due to ionizing radiation // Journal of translational medicine. 2017. V. 15. №1. P. 1 18. https://doi.org/10.1186/s12967 017 1338 x
  • Belfiore A. et al. Insulin receptor isoforms in physiology and disease: an updated view // Endocrine reviews. 2017. V. 38. №5. P. 379 431. https://doi.org/10.1210/er.2017 00073
  • Belfiore A. et al. Insulin receptor isoforms and insulin receptor/insulin like growth factor receptor hybrids in physiology and disease // Endocrine reviews. 2009. V. 30. №6. P. 586 623. https://doi.org/10.1210/er.2008 0047
  • Hölscher C. New drug treatments show neuroprotective effects in Alzheimer’s and Parkinson’s diseases // Neural regeneration research. 2014. V. 9. №21. P. 1870. https://doi.org/10.4103/1673 5374.145342
  • Akintola A. A., van Heemst D. Insulin, aging, and the brain: mechanisms and implications // Frontiers in endocrinology. 2015. V. 6. P. 13. https://doi.org/10.3389/fendo.2015.00013
  • Numan S., Russell D. S. Discrete expression of insulin receptor substrate 4 mRNA in adult rat brain // Molecular brain research. 1999. V. 72. №1. P. 97 102. https://doi.org/10.1016/S0169 328X(99)00160 6
  • Araki E. et al. Signalling in mice with targeted disruption // Nature. 1994. V. 372. №1. P. 186 90.
  • Schubert M. Insulin receptor substrate 2 deficiency impairs brain growth and promotes tau phosphorylation // Journal of Neuroscience. 2003. V. 23. №18. P. 7084 7092. https://doi.org/10.1523/JNEUROSCI.23 18 07084.2003
  • Taguchi A., Wartschow L. M., White M. F. Brain IRS2 signaling coordinates life span and nutrient homeostasis // Science. 2007. V. 317. №5836. P. 369 372. https://doi.org/10.1126/science.1142179
  • Sadagurski M. et al. Irs2 and Irs4 synergize in non LepRb neurons to control energy balance and glucose homeostasis // Molecular metabolism. 2014. V. 3. №1. P. 55 63. https://doi.org/10.1016/j.molmet.2013.10.004
  • Brüning J. C. et al. Role of brain insulin receptor in control of body weight and reproduction // Science. 2000. V. 289. №5487. P. 2122 2125. https://doi.org/10.1126/science.289.5487.2122
  • Bomfim T. R. et al. An anti diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease associated Aβ oligomers // The Journal of clinical investigation. 2012. V. 122. №4. P. 1339 1353. https://doi.org/10.1172/JCI57256
  • Talbot K. et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF 1 resistance, IRS 1 dysregulation, and cognitive decline // The Journal of clinical investigation. 2012. V. 122. №4. P. 1316 1338. https://doi.org/10.1172/JCI59903
  • Denver P., English A., McClean P. L. Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice // Brain, behavior, and immunity. 2018. V. 70. P. 423 434. https://doi.org/10.1016/j.bbi.2018.03.032
  • Boucher J., Kleinridders A., Kahn C. R. Insulin receptor signaling in normal and insulin resistant states // Cold Spring Harbor perspectives in biology. 2014. V. 6. №1. P. a009191. https://doi.org/10.1101/cshperspect.a009191
  • Cho N. H. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045 // Diabetes research and clinical practice. 2018. V. 138. P. 271 281. https://doi.org/10.1016/j.diabres.2018.02.023
  • Pugazhenthi S., Qin L., Reddy P. H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease // Biochimica et Biophysica Acta ( Molecular Basis of Disease. 2017. V. 1863. №5. P. 1037 1045. https://doi.org/10.1016/j.bbadis.2016.04.017
  • Reitz C., Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers // Biochemical pharmacology. 2014. V. 88. №4. P. 640 651. https://doi.org/10.1016/j.bcp.2013.12.024
  • Anor C. J. Neuropsychiatric symptoms in Alzheimer disease, vascular dementia, and mixed dementia // Neurodegenerative Diseases. 2017. V. 17. №4 5. P. 127 134. https://doi.org/10.1159/000455127
  • McGeer P. L., McGeer E. G. The amyloid cascade inflammatory hypothesis of Alzheimer disease: implications for therapy // Acta neuropathologica. 2013. V. 126. №4. P. 479 497. https://doi.org/10.1007/s00401 013 1177 7
  • Wright A. L. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP J20 mouse model of Alzheimer’s disease // PloS one. 2013. V. 8. №4. https://doi.org/10.1371/journal.pone.0059586
  • Li J. Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review // Canadian journal of diabetes. 2017. V. 41. №1. P. 114 119. https://doi.org/10.1016/j.jcjd.2016.07.003
  • Denver P., McClean P. L. Distinguishing normal brain aging from the development of Alzheimer's disease: inflammation, insulin signaling and cognition // Neural regeneration research. 2018. V. 13. №10. P. 1719. https://doi.org/10.4103/1673 5374.238608
  • Frölich L. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease // Journal of neural transmission. 1998. V. 105. №4 5. P. 423 438. https://doi.org/10.1007/s007020050068
  • Ratzmann K. P., Hampel R. Glucose and insulin concentration patterns in cerebrospinal fluid following intravenous glucose injection in humans // Endokrinologie. 1980. V. 76. №2. P. 185-188. PMID: 7004864
  • Querfurth H. W., LaFerla F. M. Mechanisms of disease // N Engl J Med. 2010. V. 362. №4. P. 329 344.
  • Suzanne M. Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease // Drugs. 2017. V. 77. №1. P. 47 65. https://doi.org/10.1007/s40265 016 0674 0
  • Gabuzda D. Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative // Journal of Biological Chemistry. 1994. V. 269. №18. P. 13623 13628.
  • Романчук Н. П., Пятин В. Ф., Волобуев А. Н., Булгакова С. В., Тренева Е. В., Романов Д. В. Мозг, депрессия, эпигенетика: новые данные // Бюллетень науки и практики. 2020. Т. 6. №5. С. 163 183. https://doi.org/10.33619/2414 2948/54/21
  • Zimbone S. Amyloid Beta monomers regulate cyclic adenosine monophosphate response element binding protein functions by activating type‐1 insulin‐like growth factor receptors in neuronal cells // Aging cell. 2018. V. 17. №1. P. e12684. https://doi.org/10.1111/acel.12684
  • Тренева Е. В., Булгакова С. В., Курмаев Д. П., Нестеренко С. А., Ленкин С. Г. Анализ циркадных ритмов секреции кортизола у мужчин с признаками ускоренного старения и их клинико организационное значение // Современные проблемы здравоохранения и медицинской статистики. 2022. №1. С. 213 224.
  • Булгакова С. В., Романчук Н. П. Сон и старение: эндокринные и эпигенетические аспекты // Бюллетень науки и практики. 2020. Т. 6. No8. С. 65 96. https://doi.org/10.33619/2414 2948/57/08
  • Zhao W. Q. et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors // The FASEB Journal. 2008. V. 22. №1. P. 246 260. https://doi.org/10.1096/fj.06 7703com
  • Ma Q. L. et al. β amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c Jun N terminal kinase signaling: suppression by omega 3 fatty acids and curcumin // Journal of Neuroscience. 2009. V. 29. №28. P. 9078 9089. https://doi.org/10.1523/JNEUROSCI.1071 09.2009
  • Schubert M. et al. Role for neuronal insulin resistance in neurodegenerative diseases // Proceedings of the National Academy of Sciences. 2004. V. 101. №9. P. 3100 3105. https://doi.org/10.1073/pnas.0308724101
  • Vandal M. et al. Insulin reverses the high fat diet induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease // Diabetes. 2014. V. 63. №12. P. 4291-4301. https://doi.org/10.2337/db14 0375
  • Farris W. et al. Insulin degrading enzyme regulates the levels of insulin, amyloid β protein, and the β amyloid precursor protein intracellular domain in vivo // Proceedings of the National Academy of Sciences. 2003. V. 100. №7. P. 4162 4167. https://doi.org/10.1073/pnas.0230450100
  • Ittner L. M. et al. Dendritic function of tau mediates amyloid β toxicity in Alzheimer’s disease mouse models // Cell. 2010. V. 142. №3. P. 387 397. https://doi.org/10.1016/j.cell.2010.06.036
  • Hong M., Lee V. M. Y. Insulin and insulin like growth factor 1 regulate tau phosphorylation in cultured human neurons // Journal of Biological Chemistry. 1997. V. 272. №31. P. 19547 19553. https://doi.org/10.1074/jbc.272.40.25326
  • Bhat R. et al. Structural insights and biological effects of glycogen synthase kinase 3 specific inhibitor AR A014418 // Journal of Biological Chemistry. 2003. V. 278. №46. P. 45937-45945. https://doi.org/10.1074/jbc.M306268200
  • Freude S. et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo // Diabetes. 2005. V. 54. №12. P. 3343 3348. https://doi.org/10.2337/diabetes.54.12.3343
  • Cheng C. M. et al. Tau is hyperphosphorylated in the insulin like growth factor I null brain // Endocrinology. 2005. V. 146. №12. P. 5086 5091. https://doi.org/10.1210/en.2005 0063
  • Phiel C. J. et al. GSK 3α regulates production of Alzheimer’s disease amyloid β peptides // Nature. 2003. V. 423. №6938. P. 435 439. https://doi.org/10.1038/nature01640
  • Sims Robinson C. et al. How does diabetes accelerate Alzheimer disease pathology? // Nature Reviews Neurology. 2010. V. 6. №10. P. 551. https://doi.org/10.1038/nrneurol.2010.130
  • De la Monte S. M. et al. Neuronal thread protein regulation and interaction with microtubule associated proteins in SH Sy5y neuronal cells // Cellular and Molecular Life Sciences CMLS. 2003. V. 60. №12. P. 2679 2691. https://doi.org/10.1007/s00018 003 3305 3
  • Bedse G. et al. Aberrant insulin signaling in Alzheimer’s disease: current knowledge // Frontiers in neuroscience. 2015. V. 9. P. 204. https://doi.org/10.3389/fnins.2015.00204
  • Zlokovic B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders // Nature Reviews Neuroscience. 2011. V. 12. №12. P. 723 738. https://doi.org/10.1038/nrn3114
  • Kahn A. M. et al. Insulin Acutely Inhibits Cultured Vascular Smooth Muscle Cell Contraction by a Nitric Oxide Synthase Dependent Pathway // Hypertension. 1997. V. 30. №4. P. 928 933. https://doi.org/10.1161/01.HYP.30.4.928
  • Bhamra M. S., Ashton N. J. Finding a pathological diagnosis for A lzheimer’s disease: Are inflammatory molecules the answer? // Electrophoresis. 2012. V. 33. №24. P. 3598 3607. https://doi.org/10.1002/elps.201200161
  • Mushtaq G. et al. Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms // Saudi journal of biological sciences. 2015. V. 22. №1. P. 4 13. https://doi.org/10.1016/j.sjbs.2014.05.003
  • Fishel M. A. et al. Hyperinsulinemia provokes synchronous increases in central inflammation and β amyloid in normal adults // Archives of neurology. 2005. V. 62. №10. P. 1539-1544. https://doi.org/10.1001/archneur.62.10.noc50112
  • Sokolova A. et al. Monocyte chemoattractant protein‐1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease // Brain pathology. 2009. V. 19. №3. P. 392-398. https://doi.org/10.1111/j.1750 3639.2008.00188.x
  • Nakamura M., Watanabe N. Ubiquitin like protein MNSFβ/endophilin II complex regulates Dectin 1 mediated phagocytosis and inflammatory responses in macrophages // Biochemical and biophysical research communications. 2010. V. 401. №2. P. 257 261. https://doi.org/10.1016/j.bbrc.2010.09.045
  • Akash M. S. H., Rehman K., Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus // Journal of cellular biochemistry. 2013. V. 114. №3. P. 525 531. https://doi.org/10.1002/jcb.24402
  • Erickson M. A., Hansen K., Banks W. A. Inflammation induced dysfunction of the low density lipoprotein receptor related protein 1 at the blood brain barrier: protection by the antioxidant N acetylcysteine // Brain, behavior, and immunity. 2012. V. 26. №7. P. 1085 1094. https://doi.org/10.1016/j.bbi.2012.07.003
  • Matrone C. et al. Inflammatory risk factors and pathologies promoting Alzheimer’s disease progression: is RAGE the key // Histology and histopathology. 2015. V. 30. №2. P. 125 139.
  • Münch G. et al. Alzheimer’s disease synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts // Journal of neural transmission. 1998. V. 105. №4 5. P. 439-461. https://doi.org/10.1007/s007020050069
  • Булгакова С. В., Тренева Е. В., Захарова Н. О. Бета коронавирусы и эндокринная система человека: новые данные (обзор литературы) // Клиническая лабораторная диагностика. 2022. Т. 67. №3. С. 140 146. https://doi.org/10.51620/0869 2084 2022 67 3 140-146
  • Chiang M. C. et al. Metformin activation of AMPK dependent pathways is neuroprotective in human neural stem cells against Amyloid beta induced mitochondrial dysfunction // Experimental cell research. 2016. V. 347. №2. P. 322 331. https://doi.org/10.1016/j.yexcr.2016.08.013
  • Chung M. M. et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK dependent // Biochimica et Biophysica Acta ( Molecular Basis of Disease. 2015. V. 1852. №5. P. 720 731. https://doi.org/10.1016/j.bbadis.2015.01.006
  • Gupta A., Bisht B., Dey C. S. Peripheral insulin sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer’s like changes // Neuropharmacology. 2011. V. 60. №6. P. 910 920. https://doi.org/10.1016/j.neuropharm.2011.01.033
  • Kickstein E. et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling // Proceedings of the National Academy of Sciences. 2010. V. 107. №50. P. 21830 21835. https://doi.org/10.1073/pnas.0912793107
  • Li J. et al. Metformin attenuates Alzheimer’s disease like neuropathology in obese, leptin resistant mice // Pharmacology biochemistry and behavior. 2012. V. 101. №4. P. 564 574. https://doi.org/10.1016/j.pbb.2012.03.002
  • Chen Y. et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up regulating BACE1 transcription // Proceedings of the National Academy of Sciences. 2009. V. 106. №10. P. 3907 3912. https://doi.org/10.1073/pnas.0807991106
  • Ng T. P. et al. Long term metformin usage and cognitive function among older adults with diabetes // Journal of Alzheimer's Disease. 2014. V. 41. №1. P. 61 68. https://doi.org/10.3233/JAD131901
  • Guo M. et al. Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus // Clinical and experimental pharmacology and physiology. 2014. V. 41. №9. P. 650 656. https://doi.org/10.1111/14401681.12265
  • Herath P. M. et al. The effect of diabetes medication on cognitive function: evidence from the PATH through life study // BioMed research international. 2016. V. 2016. https://doi.org/10.1155/2016/7208429
  • Moore E. M. et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin // Diabetes care. 2013. V. 36. №10. P. 2981 2987. https://doi.org/10.2337/dc13 0229
  • Osborne C. et al. Glimepiride protects neurons against amyloid β induced synapse damage // Neuropharmacology. 2016. V. 101. P. 225 236. https://doi.org/10.1016/j.neuropharm.2015.09.030
  • Alp H. et al. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin // Experimental diabetes research. 2012. V. 2012. https://doi.org/10.1155/2012/230342
  • Esmaeili M. H., Bahari B., Salari A. A. ATP sensitive potassium channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression and anxiety related symptoms in a rat model of Alzheimer’s disease // Brain research bulletin. 2018. V. 137. P. 265 276. https://doi.org/10.1016/j.brainresbull.2018.01.001
  • Hsu C. C. et al. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin // Journal of Alzheimer's Disease. 2011. V. 24. №3. P. 485 493. https://doi.org/10.3233/JAD 2011 101524
  • Landreth G. Therapeutic use of agonists of the nuclear receptor PPARγ in Alzheimer’s disease // Current Alzheimer Research. 2007. V. 4. №2. P. 159 164. https://doi.org/10.2174/156720507780362092
  • Heneka M. T. et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1 42 levels in APPV717I transgenic mice // Brain. 2005. V. 128. №6. P. 1442 1453. https://doi.org/10.1093/brain/awh452
  • Yu Y. et al. Insulin sensitizers improve learning and attenuate tau hyperphosphorylation and neuroinflammation in 3xTg AD mice // Journal of neural transmission. 2015. V. 122. №4. P. 593 606. https://doi.org/10.1007/s00702 014 1294 z
  • Fernandez Martos C. M. et al. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease // Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2017. V. 3. №1. P. 92 106. https://doi.org/10.1016/j.trci.2016.11.002
  • Sato T. et al. Efficacy of PPAR γ agonist pioglitazone in mild Alzheimer disease // Neurobiology of aging. 2011. V. 32. №9. P. 1626 1633. https://doi.org/10.1016/j.neurobiolaging.2009.10.009
  • Cheng H. et al. The peroxisome proliferators activated receptor gamma agonists as therapeutics for the treatment of Alzheimer’s disease and mild to moderate Alzheimer’s disease: a meta analysis // International Journal of Neuroscience. 2016. V. 126. №4. P. 299 307. https://doi.org/10.3109/00207454.2015.1015722
  • Hölscher C. The role of GLP 1 in neuronal activity and neurodegeneration // Vitamins & Hormones. Academic Press, 2010. V. 84. P. 331 354. https://doi.org/10.1016/B978 0 12 381517 0.00013 8
  • Hunter K., Hölscher C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis // BMC neuroscience. 2012. V. 13. №1. P. 33. https://doi.org/10.1186/1471 2202 13 33
  • McClean P. L., Hölscher C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease // Neuropharmacology. 2014. V. 76. P. 57 67. https://doi.org/10.1016/j.neuropharm.2013.08.005
  • Hansen H. H. et al. The GLP 1 receptor agonist liraglutide reduces pathology specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy // Brain research. 2016. V. 1634. P. 158 170. https://doi.org/10.1016/j.brainres.2015.12.052
  • Gejl M. et al. In Alzheimer’s disease, 6 month treatment with GLP 1 analog prevents decline of brain glucose metabolism: randomized, placebo controlled, double blind clinical trial // Frontiers in aging neuroscience. 2016. V. 8. P. 108. https://doi.org/10.3389/fnagi.2016.00108
  • Kosaraju J. et al. Saxagliptin: a dipeptidyl peptidase 4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease // Neuropharmacology. 2013. V. 72. P. 291 300. https://doi.org/10.1016/j.neuropharm.2013.04.008
  • Kosaraju J. et al. Vildagliptin: an anti‐diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin‐induced Alzheimer’s disease // Journal of Pharmacy and Pharmacology. 2013. V. 65. №12. P. 1773 1784. https://doi.org/10.1111/jphp.12148
  • Kornelius E. et al. DPP‐4 inhibitor linagliptin attenuates Aβ‐induced cytotoxicity through activation of AMPK in neuronal cells // CNS neuroscience & therapeutics. 2015. V. 21. №7. P. 549-557. https://doi.org/10.1111/cns.12404
  • Rizzo M. R. et al. Dipeptidyl peptidase 4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014. V. 69. №9. P. 1122 1131. https://doi.org/10.1093/gerona/glu032
  • Kern W. et al. Improving influence of insulin on cognitive functions in humans // Neuroendocrinology. 2001. V. 74. №4. P. 270 280. https://doi.org/10.1159/000054694
  • Freiherr J. et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence // CNS drugs. 2013. V. 27. №7. P. 505 514. https://doi.org/10.1007/s40263 013 0076 8
  • Пятин В. Ф., Маслова О. А., Романчук Н. П., Булгакова С. В., Волобуев А. Н. Гемостаз и когнитивный мозг: 5П медицина и хронотерапия артериальной гипертонии // Бюллетень науки и практики. 2021. Т. 7. №5. С. 127 183. (in Russian). https://doi.org/10.33619/2414 2948/66/16
  • Craft S. et al. Effects of regular and long acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial // Journal of Alzheimer's Disease. 2017. V. 57. №4. P. 1325-1334. https://doi.org/10.3233/JAD 161256
  • Łabuzek K. et al. Quantification of metformin by the HPLC method in brain regions, cerebrospinal fluid and plasma of rats treated with lipopolysaccharide // Pharmacological Reports. 2010. V. 62. №5. P. 956 965. https://doi.org/10.1016/S1734 1140(10)70357 1
  • Cheng C. et al. Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis // Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014. V. 69. №10. P. 1299 1305. https://doi.org/10.1093/gerona/glu073
  • Luchsinger J. A. et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial // Journal of Alzheimer's Disease. 2016. V. 51. №2. P. 501 514. https://doi.org/10.3233/JAD 150493
  • Luchsinger J. A. et al. Metformin, lifestyle intervention, and cognition in the diabetes prevention program outcomes study // Diabetes care. 2017. V. 40. №7. P. 958 965. https://doi.org/10.2337/dc16 2376
  • Valencia W. M. et al. Metformin and ageing: improving ageing outcomes beyond glycaemic control // Diabetologia. 2017. V. 60. №9. P. 1630 1638. https://doi.org/10.1007/s00125017 4349 5
  • Imfeld P. et al. Metformin, other antidiabetic drugs, and risk of Alzheimer’s disease: a population‐based case control study // Journal of the American Geriatrics Society. 2012. V. 60. №5. P. 916 921. https://doi.org/10.1111/j.1532 5415.2012.03916.x
  • Geldmacher D. S. et al. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease // Archives of neurology. 2011. V. 68. №1. P. 45 50. https://doi.org/10.1001/archneurol.2010.229
  • Femminella G. D. et al. Antidiabetic drugs in Alzheimer’s disease: Mechanisms of action and future perspectives // Journal of diabetes research. 2017. V. 2017. https://doi.org/10.1155/2017/7420796
  • Nauck M. A. Glucagon like peptide 1 (GLP 1) in the treatment of diabetes // Hormone and metabolic research. 2004. V. 36. №11/12. P. 852 858. https://doi.org/10.1055/s 2004 826175
  • Drucker D. J. et al. Incretin based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits // Diabetes care. 2010. V. 33. №2. P. 428 433. https://doi.org/10.2337/dc09 1499
  • Cork S. C. et al. Distribution and characterization of Glucagon like peptide 1 receptor expressing cells in the mouse brain // Molecular metabolism. 2015. V. 4. №10. P. 718 731. https://doi.org/10.1016/j.molmet.2015.07.008
  • Liu X. Y. et al. Liraglutide prevents beta amyloid induced neurotoxicity in SH SY5Y cells via a PI3K dependent signaling pathway // Neurological research. 2016. V. 38. №4. P. 313-319. https://doi.org/10.1080/01616412.2016.1145914
  • Cai H. Y. et al. Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats // Behavioural brain research. 2017. V. 318. P. 28 35. https://doi.org/10.1016/j.bbr.2016.10.033
  • Isik A. T. et al. The effects of sitagliptin, a DPP 4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease // Diabetes research and clinical practice. 2017. V. 123. P. 192 198. https://doi.org/10.1016/j.diabres.2016.12.010
  • Shingo A. S. et al. Intracerebroventricular administration of an insulin analogue recovers STZ induced cognitive decline in rats // Behavioural brain research. 2013. V. 241. P. 105 111. https://doi.org/10.1016/j.bbr.2012.12.005
  • Gegenhuber B. et al. Gene regulation by gonadal hormone receptors underlies brain sex differences // Nature. 2022. V. 606. №7912. P. 153 159. https://doi.org/10.1038/s41586 022 04686
  • Пятин В. Ф., Маслова О. А., Романчук Н. П., Волобуев А. Н., Булгакова С. В., Романов Д. В., Сиротко И. И. Нейровизуализация: структурная, функциональная, фармакологическая, биоэлементологии и нутрициологии // Бюллетень науки и практики. 2021. Т. 7. №10. С. 145 184. https://doi.org/10.33619/2414 2948/71/18
  • Arce J. M. R., Winkelman M. J. Psychedelics, Sociality, and Human Evolution // Frontiers in Psychology. 2021. V. 12. https://doi.org/10.3389/fpsyg.2021.729425
  • Романчук П. И. Активное долголетие: биофизика генома, нутригеномика, нутригенетика, ревитализация.Самара, 2013.
  • Романов Д. В., Романчук Н. П. Болезнь Альцгеймера и ядерная медицина: циркадианный стресс и нейровоспаление, нейрокоммуникации и нейрореабилитация // Бюллетень науки и практики. 2022. Т. 8. №5. С. 256 312. https://doi.org/10.33619/24142948/78/35
  • Волобуев А. Н., Романчук Н. П., Маслова О. А., Пятин В. Ф., Романов Д. В. Проблемы ядерной медицины и когнитивной реабилитации // Бюллетень науки и практики. 2022. Т. 8. №6. С. 308 350. https://doi.org/10.33619/2414 2948/79/33
Еще
Статья обзорная