Селекция на содержание -глюканов в зерне овса как перспективное направление для получения продуктов здорового питания, сырья и фуража (обзор)

Автор: Лоскутов И.Г., Полонский В.И.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.52, 2017 года.

Бесплатный доступ

Известно, что водорастворимые пищевые волокна оказывают диетическое, профилактическое и лечебное воздействие на организм человека. Управление по контролю продуктов и лекарств США (US Food and Drug Administration) выступило с официальным заявлением о том, что растворимые пищевые волокна из цельной зерновки овса в виде хлопьев, отрубей и муки способствуют снижению риска сердечно-сосудистых заболеваний. На основании имеющихся доказательств зависимости между потребленным количеством β-глюканов и снижения холестерина (общего и низкой плотности) этой государственной организацией было рекомендовано ежедневное потребление не менее 3 г β-глюканов из овса или ячменя. Европейская Организация по безопасности пищевых продуктов (European Food Safety Association, EFSA) также пришла к заключению о высокой ценности β-глюканов. Физико-химические свойства, химические модификации и возможность промышленного применения β-глюканов открывают для них четкие перспективы использования в пищевых продуктах, лекарственных и косметических средствах. Излагаются результаты изучения разнообразного сортового и видового материала по овсу на содержание β-глюканов в зерновке. Констатируется, что голозерные формы овса имеют большее общее содержание указанного полисахарида по сравнению с пленчатыми, но последние содержат больше нерастворимых β-глюканов в зерновке. Выполненная сравнительно недавно идентификация генов, участвующих в биосинтезе β-глюканов зерновых культур, и созданная первая генетическая карта открывают новые возможности для генетического улучшения показателей качества зерна и получаемых из него пищевых продуктов, которые имеют важное значение для здоровья человека. В результате анализа популяции из 1700 линий овса, полученных из сорта Belinda (Швеция) с помощью индуцированного мутагенеза, были обнаружены образцы с содержанием β-глюканов в зерновке от 1,8 до 7,5 %, при этом у родительской формы оно равнялось 4,9 %. Количество β-глюканов в зерновке овса связано с накоплением белка и жира, с натурной массой зерна, а также с зерновой продуктивностью. Содержание этих полисахаридов зависит от метеорологических условий и агротехнических приемов возделывания сортов овса. С помощью компьютерного моделирования выполнено ранжирование факторов, влияющих на содержание β-глюканов у пленчатых и голозерных сортов овса во время их выращивания. Анализ показал, что выбор сорта - наиболее важный параметр модели в определении окончательного накопления β-глюкана в зерновке по сравнению с другими факторами. Рассматриваются проблемы создания новых высокопродуктивных сортов овса с максимальным содержанием и оптимальной структурой этого полисахарида вместе с другими показателями качества зерновки, а также возможности получение функциональных продуктов питания на основе переработки зерна таких сортов. Делается вывод, что β-глюканы будут играть все возрастающую роль в глобальной пищевой и медицинской отраслях. Для получения сортов разного (пищевого или кормового) направления использования необходим комплексный скрининг и выявление форм овса, контрастных по накоплению β-глюканов.

Еще

Овес, голозерный, пленчатый, β-глюканы, полисахариды, пищевые волокна, липопротеиды, гликемических индекс, холестерин, раковые клетки, селекция, переработка, антипитатальные свойства кормов

Короткий адрес: https://sciup.org/142213820

IDR: 142213820   |   DOI: 10.15389/agrobiology.2017.4.646rus

Список литературы Селекция на содержание -глюканов в зерне овса как перспективное направление для получения продуктов здорового питания, сырья и фуража (обзор)

  • Boczkowska M., Podyma W., Łapiński B. Oat. In: Genetic and genomic resources for grain cereals improvement. Academic Press, 2016: 159-225.
  • Arendt E.K., Zannini E. Oats. In: Cereal grains for the food and beverage industries. Woodhead Publishing, 2013: 243-282.
  • Shewry P.R., Piironen V., Lampi A.-M., Nyström L., Li L., Rakszegi M., Fraś A., Boros D., Gebruers K., Courtin C.M., Delcour J.A., Andersson A.A.M., Dimberg L., Bedő Z., Ward J.L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56 (21): 9777-9784.
  • Welch R.W. Nutrient composition and nutritional quality of oats and comparisons with other cereals. In: Oats: chemistry and technology/F.H. Webster, P.J. Wood (eds.). American Association of Cereal Chemists Inc., St. Paul, MN, USA, 2011: 95-107.
  • Kendall C.W.C., Esfahani A., David J.A., Jenkins D.J.A. The link between dietary fibre and human health. Food Hydrocolloids, 2010, 24(1): 42-48.
  • Ballabio C., Uberti F., Manferdelli S., Vacca E., Boggini G., Redaelli R., Catassi C., Lionetti E., Peñas E., Restani P. Molecular characterisation of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. Journal of Cereal Science, 2011, 54(1): 110-115.
  • Fincher G.B., Stone B.A. Cell walls and their components in cereal grain technology. In: Advances in cereal science and technology/Y. Pomeranz (ed.). American Association of Cereal Chemists Inc., St. Paul, MN, USA, 1986: 207-295.
  • Wood P.J., Beer M.U. Functional oat products. In: Functional foods: Biochemical and processing aspects/G. Mazza (ed.). Technomic Publishing Co, Lancaster, PA, USA, 1998: 1-37.
  • Wood P.J. Physicochemical characteristics and physiological properties of oat (1/3),(1/4)-b-D-glucan. In: Oat bran/P.J. Wood (ed.). American Association of Cereal Chemists Inc., St. Paul, MN, USA, 1993: 83-112.
  • Miller S.S., Fulcher R.G. Oat endosperm cell walls: II. Hot-water solubilization and enzymatic digestion of the wall. Cereal Chemistry, 1995, 72(2): 428-432.
  • Skendi A., Biliaderis C.G., Lazaridou A., Izydorczyk M.S. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. Journal of Cereal Science, 2003, 38(1): 15-31.
  • Doehlert D.C., Simsek S. Variation in β-glucan fine structure, extractability, and flour slurry viscosity in oats due to genotype and environment. Cereal Chemistry, 2012, 89(5): 242-246.
  • Johansson L., Tuomainen P., Ylinen M., Ekholm P., Virkki L. Structural analysis of water-soluble and -insoluble β-glucans of whole-grain oats and barley. Carbohydrate Polymers, 2004, 58(3): 267-274.
  • Li W., Cui S.W., Wang Q., Yada R.Y. Study of conformational properties of cereal β-glucans by computer modeling. Food Hydrocolloids, 2012, 26(2): 377-382.
  • Collins H.M., Burton R.A., Topping D.L., Liao M.-L., Bacic A., Fincher G.B. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry, 2010, 87(4): 272-282.
  • Li J.-M., Nie S.-P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocolloids, 2016, 53(2): 46-61.
  • Ryu J.-H., Lee S., You S.G., Shim J.-H., Yoo S.-Ho. Effects of barley and oat β-glucan structures on their rheological and thermal characteristics. Carbohydrate Polymers, 2012, 89(4): 1238-1243.
  • AACC International Approved Methods of Analysis, 11th Ed. Method 32-22.01. Beta-Glucan in Oat Fractions and Unsweetened Oat Cereals. AACC International, St. Paul, MN, U.S.A, 1999.
  • Motilva M.-J., Serra A., Borrás X., Romero M.-P., Domínguez A., Labrador A., Peiró L. Adaptation of the standard enzymatic protocol (Megazyme method) to microplaque format for β-(1,3)(1,4)-d-glucan determination in cereal based samples with a wide range of β-glucan content. Journal of Cereal Science, 2014, 59(2): 224-227.
  • Munck L. The revolutionary aspect of exploratory chemometric technology. Narayana Press, Gylling, Denmark, 2005.
  • Brownlee I.A. The physiological roles of dietary fibre. Food Hydrocolloids, 2011, 25(2): 238-250.
  • Petition for health claim: Barley betafiber and coronary heart disease. FDA -Food and Drug Administration. Office of Nutritional Products, Labeling and Dietary Supplements (hfs-800), 2006. Режим доступа: http://www.fda.gov/ohrms/dockets/dockets/06p0393/06p-0393-cp00001-002-vol1.pdf. Без даты.
  • Harland J. Authorised EU health claims for barley and oat beta-glucans. In: Foods, nutrients and food ingredients with authorised EU health claims. Woodhead Publishing, 2014: 25-45.
  • Reyna-Villasmil N., Bermúdez-Pirela V., Mengual-Moreno E., Arias N., Cano-Ponce C., Leal-Gonzalez E., Souki A., Inglett G.E., Israili Z.H., Hernández-Hernández R., Valasco M., Arraiz N. Oat-derived β-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. American Journal of Therapeutics, 2007, 14(2): 203-212.
  • Karmally W., Montez M.G., Palmas W., Martinez W., Branstetter A., Ramakrishnan R., Holleran S.F., Haffner S.M., Ginsberg H.N. Cholesterol-lowering benefits of oat-containing cereal in hispanic Americans. Journal of the American Dietetic Association, 2005, 105(6): 967-970.
  • Regand A., Chowdhury Z., Tosh S.M., Wolever T.M.S., Wood P. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemistry, 2011, 129(2): 297-304.
  • Lafiandra D., Riccardi G., Shewry P.R. Improving cereal grain carbohydrates for diet and health. Journal of Cereal Science, 2014, 59(2): 312-326.
  • Regand A., Chowdhury Z., Tosh S.M., Wolever T.M.S., Wood P. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chemistry, 2011, 129(2): 297-304.
  • Dong J., Cai F., Shen R., Liu Y. Hypoglycaemic effects and inhibitory effect on intestinal disaccharidas of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry, 2011, 129(3): 1066-1071.
  • Tiwari U., Cummins E. Meta-analysis of the effect of β-glucan intake on blood cholesterol and glucose levels. Nutrition, 2011, 27(10): 1008-1016.
  • Wood P.J. Oat and rye β-glucan: properties and function. Cereal Chemistry, 2010, 87(4): 315-330.
  • Wood P.J. Cereal β-glucans in diet and health. Journal of Cereal Science, 2007, 46(3): 230-238.
  • Pentikäinen S., Karhunen L., Flander L., Katina K., Meynier A., Aymard P., Vinoy S., Poutanen K. Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety. Appetite, 2014, 75(4): 150-156.
  • Choromanska A., Kulbacka J., Rembialkowska N., Pilat J., Oledzki R., Harasym J., Saczko J. Anticancer properties of low molecular weight oat beta-glucan -An in vitro study. International Journal of Biological Macromolecules, 2015, 80(9): 23-28.
  • Parzonko A., Makarewicz-Wujec M., Jaszewska E., Harasym J., Kozłowska-Wojciechowska M. Pro-apoptotic properties of (1,3)(1,4)-β-d-glucan from Avena sativa on human melanoma HTB-140 cells in vitro. International Journal of Biological Macromolecules, 2015, 72(1): 757-763.
  • Błaszczyk K., Wilczak J., Harasym J., Gudej S., Suchecka D., Królikowski T., Lange E., Gromadzka-Ostrowska J. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocolloids, 2015, 51(10): 272-280.
  • Zhang G., Hamaker B.R. Cereal carbohydrates and colon health. Cereal Chemistry, 2010, 87(4): 331-341.
  • Davy B.M., Davy K.P., Ho R.C., Beske S.D., Davrath L.R., Melby C.L. High-fiber oat cereal compared with wheat cereal consumption favorably alters LDL-cholesterol subclass and particle numbers in middle-aged and older men. American Journal of Clinical Nutrition, 2002, 76(2): 351-358.
  • Delaney B., Nicolosi R.J., Wilson T.A., Carlson T., Frazer S., Zheng G.-H., Hess R., Ostergren K., Haworth J., Knutson N. b-Glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic syrian golden hamsters. The Journal of Nutrition, 2003, 133(93): 468-475.
  • Chang H.-C., Chien-Ning Huang C.-N., Yeh D.-M., Wang S.-J., Peng C.-H., Wang C.-J. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods for Human Nutrition, 2013, 68(1): 18-23.
  • Gao C., Gao Z., Greenway F.L., Burton J.H., Johnson W.D., Keenan M.J., Enright F.M., Martin R.J., Chu Y.F., Zheng J. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutrition Research, 2015, 35(6): 834-843.
  • Faure A.M., Koppenol W.H., Nyström L. Iron(II) binding by cereal beta-glucan. Carbohydrate Polymers, 2015, 115(1): 739-743.
  • Svihus B., Gullord M. Effect of chemical content and physical characteristics on nutritional value of wheat, barley and oats for poultry. Animal Feed Science and Technology, 2002, 102(1-4): 71-92.
  • Toole G.A., Gall G.L., Colquhoun I.J., Drea S., Opanowicz M., Bed Z., Shewry P.R., Mills E.N.C. Spectroscopic analysis of diversity in the spatial distribution of arabinoxylan structures in endosperm cell walls of cereal species in the HEALTHGRAIN diversity collection. Journal of Cereal Science, 2012, 56(2): 134-141.
  • Hurt H.D., Mathews R., Ink S.L. Biomedical considerations of oat dietary fiber and beta-glucans. Proc. 3rd Inter. Oat Confer. Lund, Sweden, 1988: 206-222.
  • Song G., Huo P., Wu B., Zhang Z. A genetic linkage map of hexaploid naked oat constructed with SSR markers. The Crop Journal, 2015, 3(2): 353-357.
  • Lafiandra D., Riccardi G., Shewry P.R. Improving cereal grain carbohydrates for diet and health. Journal of Cereal Science, 2014, 59(2): 312-326.
  • Sikora P., Tosh S.M., Brummer Y., Olsson O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chemistry, 2013, 137(1-4): 83-91.
  • Chawade A., Sikora P., Brautigam M., Larsson M., Vivekanand V., Nakash M.A., Chen T., Olsson O. Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biology, 2010, 10(1): 86-99.
  • Redaelli R., Frate V.D., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., Stefanis E.D., Sgrulletta D. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. Journal of Cereal Science, 2013, 57(2): 193-199.
  • Leggett J. M. Using and conserving Avena genetic resources. Proc. 5th Inter. Oat Confer. Saskatoon, Canada, 1996, v. I: 128-132.
  • Howarth C., Cowan A., Leggett J.M., Valentine J. Using molecular mapping to access and understanding valuable traits in wild relatives of oats. Proc. 6th Inter. Oat Confer. Canterbury, New Zealand, 2000: 157-159.
  • Miller S.S., Wood P.J., Pietrzak L.N., Fulcher R.G. Mixed linkage beta-glucan, protein content and kernel weigh in Avena species. Cereal Chemistry, 1993, 70(2): 231-233.
  • Cho K.C., White P.J. Enzymatic analysis of beta-glucan content in different oat genotypes. Cereal Chemistry, 1993, 70(5): 539-542.
  • Frey K.J. Genetic resources of oats. In: Use of plant introductions in cultivar development. Crop Science Soсiety of America, Special publ. Part 1, 1991, 17: 15-24.
  • Welch R.W., Leggett J.M., Lloyd J.D. Variation in the kernel (1,3)(1,4)-beta-D-glucan content of oat cultivars and wild Avena species and its relationship to other characteristics. Journal of Cereal Science, 1991, 13(2): 173-178.
  • Loskutov I. Novel and traditional oat breeding directions. Proc. 32nd Nordic Cereal Congress. Espoo, Finland, 2015: 19.
  • Peterson D.M. Oat b-glucans and tocols. Proc. 4th Inter. Oat Conference. Adelaide, Australia, 1992, V. I: 19-24.
  • Peterson D.M. Oat -a multifunctional grain. Proc. 7th Inter. Oat Conference. Helsinki, Finland, 2004: 21-26.
  • Wood P.J., Paton D., Siddiqui I.R. Determination of b-glucan in oats and barley. Cereal Chemistry, 1977, 54(3): 524-533.
  • Салмина И.С., Ярош Н.П., Коваль Л.А. Полисахариды семян культурных видов овса. Труды по прикладной ботанике, генетике и селекции, 1981, 70(3): 38-44.
  • Лоскутов И.Г. Овес (Avena L.). Распространение, систематика, эволюция и селекционная ценность. СПб, 2007.
  • Loskutov I.G., Rines H.W. Avena L. In: Wild crop relatives: genomic & breeding resources. V. 1. Cereals/C. Kole (ed.). Springer, Heidelberg, Berlin, NY, 2011: 109-184.
  • Andersson A.A.M., Börjesdotter D. Effects of environment and variety on content and molecular weight of β-glucan in oats. Journal of Cereal Science, 2011, 54(1): 122-128.
  • Martinez M.F., Arelovich H.M., Wehrhahne L.N. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Research, 2010, 116(1-2): 92-100.
  • Chernyshova A.A., White P.J., Scott M.P., Jannink J.-L. Selection for nutritional function and agronomic performance in oat. Crop Science, 2007, 47(9): 2330-2339.
  • Peterson D.M., Wesenberg D.M., Burrup D.E. b-Glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Science, 1995, 35(6): 965-970.
  • Holthaus J.F., Holland J.B., White P.J., Frey K.J. Inheritance of β-glucan content of oat grain. Crop Science, 1996, 36(3): 567-572.
  • Brunner B.R., Freed R.D. Oat grain beta-glucan content as affected by nitrogen level, location and year. Crop Science, 1994, 34(2): 473-476.
  • Ganssmann W. Beta-glucan content in German oat cultivars and in oat bran obtained from them. Proc. 5th Inter. Oat Conference. Saskatoon, Canada, 1996, V. 2: 65-67.
  • Miller S.S., Vincent D.J., Weisz J., Fulcher R.G. Oat beta-glucans: an evaluation of eastern Canadian cultivars and unregistered lines. Canadian Journal of Plant Science, 1993, 73(3): 429-436.
  • Peterson D.M. Genotype and environment effects on oat beta-glucan concentration. Crop Science, 1991, 31(7): 1517-1520.
  • Kibite S., Edney M.J. The inheritance of beta-glucan concentration in an oat (Avena sativa L.) cross. Proc. 5th Inter. Oat Conference. Saskatoon, Canada, 1996, V. 2: 77-79.
  • Cox T.S., Frey K.J. Complementarity of genes for high groat-protein percentage from Avena sativa L. and A. sterilis L. Crop Science, 1985, 25(1): 106-109.
  • Uhlen A.K., Holtekjølen A.K., Sahlstrøm S., Assveen M. Mixed linked (1→3)(1→4) β-D-glucans in barley and oat varieties grown in contrasting environments. Proc. 32nd Nordic Cereal Congress. Espoo, Finland, 2015: 56.
  • Saastamoinen M., Plaami S., Kumpulainen J. Genetic and environmental variation in β-glucan content of oats cultivated or tested in Finland. Journal of Cereal Science, 1992, 16(3): 279-290.
  • Havrlentová M., Bieliková M., Mendel L., Kraic J., Hozlár P. The correlation of (1-3)(1-4)-β-d-glucan with some qualitative parameters in the oat grain. Agriculture, 2008, 54(2): 65-71.
  • Gajdošová A., Petruláková Z., Havrlentová M., Červená V., Hozová B., Šturdík E., Kogan G. The content of water-soluble and water-insoluble β-d-glucans in selected oats and barley varieties. Carbohydrate Polymers, 2007, 70(1): 46-52.
  • Biel W., Bobko K., Maciorowski R. Chemical composition and nutritive value of husked and naked oats grain. Journal of Cereal Science, 2009, 49(3): 413-418.
  • Redaelli R., Sgrulletta D., Scalfati G., De Stefanis E., Cacciatori P. Naked oats for improving human nutrition: genetic and agronomic variability of grain bioactive components. Crop Science, 2009, 49(7): 1431-1437.
  • Tiwari U., Cummins E. Simulation of the factors affecting β-glucan levels during the cultivation of oats. Journal of Cereal Science, 2009, 50(2): 175-183.
  • Hu X.-Z., Zheng J.-M., Li X.-P., Xu C., Zhao Q. Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries. Journal of Cereal Science, 2014, 60(2): 297-301.
  • Colleoni-Sirghie M., Kovalenko I.V., Briggs J.L., Fulton B., White P.J. Rheological and molecular properties of water soluble (1,3) (1,4)-β-d-glucans from high-β-glucan and traditional oat lines. Carbohydrate Polymers, 2003, 52(4): 439-447.
  • Polonskiy V.I., Sumina A.V. Nondestructive methods for evaluating quality of grain in barley and oat genotypes. Proc. 32nd Nordic Cereal Congress. Espoo, Finland, 2015: 54.
  • Newell M.A., Asoro F.G., Scott V.P., White P.J., Beavis W.D., Jannink J.-L. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor. Appl. Genet., 2012, 125: 1687-1696 ( ) DOI: 10.1007/s00122-012-1945-0
  • Zhu F., Du B., Xu B. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 2016, 52(2): 275-288.
Еще
Статья обзорная