Semantic Schema Matching Using DBpedia
Автор: Saira Gillani, Muhammad Naeem, Raja Habibullah, Amir Qayyum
Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa
Статья в выпуске: 4 vol.5, 2013 года.
Бесплатный доступ
In semantic computing, Match is an operator that takes as an input two graph-like structures; it can be database schemas or XML schemas and generates a mapping between the corresponding nodes of the two graphs. In semantic schema matching, we attempt to explore the mappings between the two schemas; based on their semantics by employing any semantic similarity measure. In this study, we have defined taxonomy of all possible semantic similarity measures; moreover we also proposed an approach that exploits semantic relations stored in the DBpedia dataset while utilizing a hybrid ranking system to dig out the similarity between nodes of the two graphs.
Data Component, Schema, Similarity Measure, DBpedia
Короткий адрес: https://sciup.org/15010410
IDR: 15010410
Список литературы Semantic Schema Matching Using DBpedia
- Batini, C., M. Lenzerini, and S.B. Navathe, "A Comparative Analysis of Methodologies for Database Schema Integration,” ACM Computing Surveys, Vol. 18, No. 4, 1986.
- Vermeer, M. Semantic Interoperability for Legacy Databases. Ph.D. thesis, Department of Computer Science, University of Twente, Enschede, Netherlands, 1997.
- H. H. Do and E. Rahm. COMA - a system for flexible combination of schema matching approaches. In Proceedings of the Very Large Data Bases Conference (VLDB), pages 610–621, 2001.
- E. Rahn and P. A. Bernstein. A survey of approaches to automatic schema matching. Very Large Database J., 10(4):334–350, 2001.
- P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on Data Semantics, IV:146-171, 2005.
- Buhwan Jeong, Daewon Lee, Hyunbo Cho, Jaewook Lee, A novel method for measuring semantic similarity for XML schema matching, Expert Systems with Applications, Vol. 34, Issue 3, 2008, pp. 1651-1658
- S. Melnik, H. Garcia-Molina, E. Rahm, Similarity Flooding: A Versatile Graph Matching Algorithm and its Application to Schema Matching, Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 117-128
- Aminul Islam , Diana Inkpen , Iluju Kiringa (2008). Applications of corpus-based semantic similarity and word segmentation to database schema matching, The VLDB Journal - The International Journal on Very Large Data Bases, v.17 n.5, p.1293-1320, August 2008
- Allison, L., Dix, T.: A bit-string longest-common-subsequence algorithm. Information Processing Letters 23 (1986) 305-310
- Islam, A., Inkpen, D.: Second order co-occurrence pmi for determining the semantic similarity of words. In: Proceedings of the International Conference on Language Resources and Evaluation, Genoa, Italy (2006) 1033-1038
- Duchateau F., Bellahsene Z., Roche M., “ A Context-based Measure for Discovering Approximate Semantic Matching between Schema Elements”, RCIS, p. 9-20, 2007.
- F. Duchateau, Z. Bellahs`ene, M. Roantree, and M. Roche. An Indexing Structure for Automatic Schema Matching. SMDB-ICDE: International Workshop on Self-Managing Database Systems, 2007.
- Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K. H. Tung, and Suresh Venkatasubramanian, "Validating Multi-column Schema Matchings by Type," 24th International Conference on Data Engineering (ICDE), 2008.
- Jeffrey Partyka, Latifur Khan, Bhavani Thuraisingham, “Semantic Schema Matching Without Shared Instances,” IEEE International Conference on Semantic Computing, 2009.
- F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “Semantic matching,” In 1st European semantic web symposium (ESWS’04), pages 61–75, Heraklion,Greece, 2004.
- Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di Sciascio1, Semantic tags generation and retrieval for online advertising.
- L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:Bringing Order to the Web. Technical report, 1998.
- L. Ding, T. Finin, A. Joshi, R. Pan, S. R. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs. Swoogle: a search and metadata engine for the semantic web. In CIKM '04, pages 652{659, 2004.
- A. Hogan, A. Harth, and S. Decker. ReConRank: A Scalable Ranking Method for Semantic Web Data with Context. 2006.
- J. M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668{677, 1998
- A. Harth, S. Kinsella, and S. Decker. Using naming authority to rank data and ontologies for web search. In International Semantic Web Conference, 2009.
- Carmel domshlak, avigdor gal, and haggai roitman, “Rank Aggregation for Automatic Schema Matching,” IEEE transactions on knowledge and data engineering, vol. 19, no. 4, april 2007.
- C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-mann. Dbpedia - a crystallization point for the web of data. Web Semantics:Science, Services and Agents on the World Wide Web, July 2009.
- P. Chirita, W. Nejdl, R. Paiu, and C. Kohlschuetter. Using ODP metadata to personalize search. In Proceedings of ACM SIGIR ’05, 2005.