Sequential Adaptive Fuzzy Inference System Based Intelligent Control of Robot Manipulators

Автор: Sahraoui Mustapha, Khelfi Mohamed Fayçal, Salem Mohammed

Журнал: International Journal of Intelligent Systems and Applications(IJISA) @ijisa

Статья в выпуске: 11 vol.6, 2014 года.

Бесплатный доступ

The present paper is dedicated to the presentation and implementation of an optimized technique allowing an on-line estimation of a robot manipulator parameters to use them in a computed torque control. Indeed the proposed control law needs the exact robot model to give good performances. The complexity of the robot manipulator and its strong non-linearity makes it hard to know its parameters. Therefore, we propose in this paper to use neuro-fuzzy networks Sequential Adaptive Fuzzy Inference System (SAFIS) to estimate the parameters of the controlled robot manipulator.

Artificial Intelligence, SAFIS (Sequential Adaptive Fuzzy Inference System), Neuro-Fuzzy Networks, Nonlinear System, Control, Robot Manipulator

Короткий адрес: https://sciup.org/15010626

IDR: 15010626

Список литературы Sequential Adaptive Fuzzy Inference System Based Intelligent Control of Robot Manipulators

  • Y. Gao, M. J. Er, W. E. Leithead, and D. J. Leith, "On-line adaptive control of robot manipulators using dynamic fuzzy neural networks", Proc. American Control Conf., pp.4828 -4833 2001
  • Q. H. M. Meng, "Application of an efficient neural network to identification and adaptive control of unknown robot dynamics", Int. J. Intell. Control Syst., vol. 1, no. 4, pp.459 -468 1996
  • Y. Gao and M. J. Er, "Robust adaptive fuzzy neural control of robot manipulators", Proc. IEEE-INNS Int. Joint Conf. Neural Networks, pp.2188 -2193 2001
  • H. Maaraf, “Notion de base de la théorie de flou”, Université d’Evry Val d’Essonne, 2002.
  • Q. H. M. Meng, "Application of an efficient neural network to identification and adaptive control of unknown robot dynamics", Int. J. Intell. Control Syst., vol. 1, no. 4, pp.459 -468 1996
  • F.L Lewis, , C. T. Abdallah, and D. M. Dawson , “Control of Robot Manipulators”, Macmillan Publishing Company, Inc, USA, 1993
  • K.B. Cho, B.H.Wang, “Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction”, Fuzzy Sets and Systems 83 (1996) 325–339
  • G.B. Huang, P. Saratchandran and N. Sundararajan, “A Generalized Growing And Pruning RBF(GGAP-RBF) Neural Network for Function Approximation”, IEEE Trans. On Neural Networks, 2004
  • H. Jun Rong, N. Sundararajan∗, Guang-Bin Huang, P. Saratchandran “Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction”, IEEE Trans, Nanyang Technological University, Singapore.2006
  • S. Haykin, Neural Networks: A Comprehensive Foundation. Upper Saddle River, N.J.: Prentice Hall, 1999. 2nd Edition
  • L.Yingwei, N. Sundararajan, and P. Saratchandran, “Performance evaluation of a sequental minimal radial basis function (RBF) neural network learning algorithm,” IEEE Trans. Neural Networks, vol. 9, pp. 308–318,Mar. 1998
  • T. Takagi, M. Sugeno, “Derivation of fuzzy control rules from human operator’s control actions”, in: Proceedings of the IFAC Symposium On Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60, July 1983
  • G. V. Puskorius and L. A. Feldkamp, “Neuro-control of nonlinear dynamics systems with Kalman filter trained recurrent networks,” IEEE Trans. Neural Networks, vol. 5, pp. 279–297, Mar. 1994.
  • D.Simon, “Training radial basic neural networks with the extended Kalmar filter”, Neuro-computing 48 ,2002 ,pp.455–475
  • F.Piltan, M.Eram, M.Taghavi,O. Sadrni and M.Jafari “Nonlinear Fuzzy Model-base Technique to Compensate Highly Nonlinear Continuum Robot Manipulator” International Journal of Intelligent Systems and Applications (IJISA),PP.135-148, ijisa.2013.
  • S. Bangia, PR Sharma, M. Garg ’’Simulation de Fuzzy Logic Basé Shunt hybride Filtre actif pour l'amélioration de la qualité de puissance’’, International Journal of Intelligent Systems and Applications (IJISA), vol 5, PP.96-104, Jan 2013.
Еще
Статья научная