Simplified instrumentation for ultrasonic measurements

Автор: Gandole Yogendra Babarao, Yawale Shrikrishna Pandurangji, Yawale Sangita Shrikrishna

Журнал: Техническая акустика @ejta

Статья в выпуске: т.5, 2005 года.

Бесплатный доступ

Simplified instrumentation for ultrasonic measurements to generate and detect ultrasonic pulses in liquids and solids is described. High frequency pulse generator is assembled using integrated circuits (74LS00, 74LS90, 74LS93, 4093, 74121 and 7407), which generates variable frequencies (0.625, 1, 1.25, 2.5, 5 and 10 MHz), having pulse width 2 microseconds to 60 microseconds. The wideband receiver is developed using radio frequency amplifier (IC CA3028), zero-cross detector (LM393), and buffer amplifier (AD 826). The gain and bandwidth of the receiver are 50 dB and 15 MHz respectively. Transit time measurement has been taken on personal computer using analog to digital converter card. The system is found suitable, accurate and versatile for ultrasonic velocity and attenuation measurements.

Еще

Короткий адрес: https://sciup.org/14316252

IDR: 14316252

Список литературы Simplified instrumentation for ultrasonic measurements

  • Green R. E. Jr. NDE: Material Charactererisation and Reliability Strategies. Eds. O. Buck and S. M. Wolf, 115-132, 1981.
  • Hull D. R., Kaultz H. E., A. Vary. Measurement of Ultrasonic velocity using Phase-slop and Cross-correlation Methods. Materials Evaluation, 43, 1455-1460, 1985.
  • Jayakumar T., Baldev Raj, Willems H., Arnold W. Influence of microstructure on ultrasonic velocity in Nimonic Alloy PE-16. Proc. Review of Progress in QNDE. Edited by D. O. Thompson and Chimenti, Plenum Press, New York, 10, 1693-1700, 1990.
  • Agnihotri P. K., Adgaonkar C. S. Theoretical evaluation of ultrasonic velocity in binary liquid mixtures. Research and Industry, 33, 139, 1988.
  • Beyer R. T., Letcher S. V. Physical ultrasonic. Academic Press, New York, p. 87, 1969.
  • Satyabala S. P., Rao M., Suryanarayana M. Sing-around technique of determining ultrasonic velocity in liquids using a single transducer. Acoust. lett., 2, 29, 1978.
  • Soitkar V. S., Sunnapwar K. P., Navaneet G. N. Receiving Systems design for Singaround Technique in Ultrasonic Measurements. Indian J. Tech., 18, 469, 1980.
  • Papadakies P, New, compact instrument for pulse-echo-overlap measurements of ultrasonic wave transit times. Rev Sci. Instrum., 47, 806, 1976.
  • Chung D. H., Silversmit D. J., Chick B. B. A Modified Ultrasonic Pulse-Echo-Overlap Method for Determining Sound Velocities and Attenuation of Solids. Rev. Sci. Instrum., 40, 718, 1969.
  • Hellier A. G., Palmer S. B., Whitehead D. G. An integrated circuit pulse echo overlap facility for measurement of velocity of sound (applied to study of magnetic phase change). Journal of Physics E: Scientific Instrument. 8, 352-354, 1975.
  • Aggarwal V. C., Gupta A. K. Acoustic attenuation and velocity measurements in a methanol and cyclohexane critical mixture. J. Phys. D: Appl. Phys., 8, 2232-2236, 1975.
  • Suc-Kyoung Hong, Young Gie Ohr. Ultrasonic speckle pattern correlation interferometry using a pulse-echo method. J. Phys. D: Appl. Phys., 31, 1392-1396, 1998.
  • Dignum R. Brief Review of Ultrasonic Attenuation with Some Emphasis on Work at Ultrahigh Frequency. Am. J. Phys., 32, 507, 1964.
  • Canxia Kan, Weiping Cai, Cuncheng Li, Lide Zhang, H Hofmeister. Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol. J. Phys. D: Appl. Phys., 36, 1609-1614, 2003.
  • Dixon S., Edwards C., Palmer S. B., Reed J. Ultrasonic generation using a plasma igniter. J. Phys. D: Appl. Phys., 34, 1075-1082, 2001.
  • Yawale S. P., Pakade S. V. Solid state variable frequency pulser-receiver system for ultrasonic measurements. Indian J. of pure -App. Phys., 33, 638-642, 1995.
  • Millman J., Halkias C. Integrated electronics. Mc Hill Ltd, Tokyo, p. 560, 1972.
  • A. A. Berdyev, B. Khemraev. Method of investigating the acoustical properties of liquids at frequencies of 300-1000 Mc, Russian J. Phys. Chem., 41, 1490, 1967.
  • D. E. Gray. American Institute of Physics Handbook, 3rd ed., Mc Graw-Hill, New York, 1972.
  • D. F. Evans, J. Thomas, J. A. Nadas, M. A. Matesich. Conductance of electrolytes in acetone and in 1-propanol-acetone mixtures at 25°deg. J. Phys. Chem., 75, 1714, 1971.
  • Gorodetsky G., Lochterman I. Pulse-echo ultrasonic interferometer for the automatic measurements of velocity and attenuation changes. Rev. Sci., Instrum., 52, 1386, 1981.
  • Malcolm Povey, Ultrasonic Techniques for Fluids Characterization, ISBN 0-12-5637306, 214, 1997.
  • Mukherjee S., Basu C., Ghosh U. S. Ultrasonic properties of V2O5P2O5 amorphous materials at different temperatures. J. Non-cryst. Solids, 144, 159, 1992.
  • Pathak L, Murli N., Amritha V. P. Stand-alone pulse-echo-overlap facility for ultrasonic wave transit time measurements. Rev. Sci. Instrum., 55, 1817, 1984.
  • Pathak L., Palanisami K. Achieving pulse-echo overlap with scopes having no intensity modulation. Rev. Sci., Instrum., 57, 123, 1986.
  • San Emeterio J. L., Ramos A., Sanz P. T., Ruiz A., Azbaid A. Modeling NDT piezoelectric ultrasonic transmitters, Rev.: ULTRASONICS, vol. 42, pp. 277-281, 2004
  • Timrot D. L., Serrendnitskaya M. A., Chkhikvadze T. D., Velocity of sound in liquid sulfur near the lambda-transition point. Sov. Phys. Dokl. 29, 961, 1984.
  • Vigoureux P. Ultrasonics, Chapman and hall, London, p. 112, 1952.
  • W. Schaaff, Numerical data and functional relationalships in science and technology, New series group II: Atomic and molecular Physics, vol.5: Molecular Acoustics, Eds: K. H. Hellwege, A. M. Hellweg. Springer-verlag, Berlin, Heidelberg, New York, 1967.
  • Weast, Robert C. ed. Handbook of Chemistry and Physics. 45th ed., Chemical Rubber Co., Cleveland Ohio, p. E-28. 1964.
Еще
Статья научная