Simulating behavior of multi-agent systems with acyclic interactions of agents

Автор: Nesterov R.A., Mitsyuk A.A., Lomazova I.A.

Журнал: Труды Института системного программирования РАН @trudy-isp-ran

Статья в выпуске: 3 т.30, 2018 года.

Бесплатный доступ

In this paper, we present an approach to model and simulate models of multi-agent systems (MAS) using Petri nets. A MAS is modeled as a set of workflow nets. The agent-to-agent interactions are described by means of an interface. It is a logical formula over atomic interaction constraints specifying the order of inner agent actions. Our study considers positive and negative interaction rules. In this work, we study interfaces describing acyclic agent interactions. We propose an algorithm for simulating the MAS with respect to a given interface. The algorithm is implemented as a ProM 6 plug-in that allows one to generate a set of event logs. We suggest our approach to be used for evaluating process discovery techniques against the quality of obtained models since this research area is on the rise. The proposed approach can be used for process discovery algorithms concerning internal agent interactions of the MAS.

Еще

Petri nets, multi-agent systems, interaction, interface, simulation, event logs

Короткий адрес: https://sciup.org/14916545

IDR: 14916545   |   DOI: 10.15514/ISPRAS-2018-30(3)-20

Список литературы Simulating behavior of multi-agent systems with acyclic interactions of agents

  • van der Aalst W.M.P. Process Mining -Data Science in Action. Springer, Heidelberg, 2016, 467 p.
  • Günther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.
  • van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-4, 2009, pp. 387-412.
  • Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011, pp. 310-317.
  • Kalenkova A.A., Lomazova I.A., van der Aalst W.M.P. Process Model Discovery: A Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489, 2014, pp. 71-90.
  • Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.
  • Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs. Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125-140.
  • Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella M., Soo A. Automated Discovery of Process Models from Event Logs: Review and Benchmark. CoRR, 2017, vol. abs/1705.02288.
  • Rubin V.A., Mitsyuk A.A., Lomazova I.A., van der Aalst W.M.P. Process Mining can be applied to software too! In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM ’14), 2014, pp. 1-8.
  • Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering real-life business transactions and process models from distributed systems. MODELS 2015, pp. 44-53.
  • Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol. abs/1710.09323.
  • Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery from software execution data. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1-8.
  • Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174 DOI: 10.15514/ISPRAS-2017-29(4)-10
  • 3TU: Big software on the run. . Available: http://www.3tu-bsr.nl. Accessed: 09.06.2018.
  • Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-Oriented Software Engineering. Transactions on Petri Nets and Other Models of Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.
  • Cabac L., Knaak N., Moldt D., Rölke H. Analysis of Multi-Agent Interactions with Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.
  • Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 21-38 DOI: 10.15514/ISPRAS-2017-29(4)-2
  • Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.
  • Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.
  • Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.
  • Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and System Modeling, 2017, vol. 16, issue 4, pp. 979-995.
  • Shugurov I.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software Engineering (SYRCoSE 2014), 2014, pp. 88-95 DOI: 10.15514/SYRCOSE-2014-8-13
  • Mitsyuk A.A., Shugurov I.S., Kalenkova A.A., van der Aalst W.M.P. Generating event logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74, 2017, pp. 1-16.
  • de Medeiros A.K.A., Günther C.W. Process Mining: Using CPN Tools to Create Test Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp. 177-190.
  • Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp. 20-36.
Еще
Статья научная