Simulation of the effect of short optical pulses on graphene

Автор: Panferov Anatolii Dmitrievich, Makhankov Alexey Vladimirovich

Журнал: Программные системы: теория и приложения @programmnye-sistemy

Рубрика: Математическое моделирование

Статья в выпуске: 1 (40) т.10, 2019 года.

Бесплатный доступ

The interaction of high-frequency pulsed electric fields with graphene is currently the subject of intense research. The paper presents the results of testing a software system for modeling such processes using the example of ultrashort laser pulses of the optical range with different polarizations. The authors develop the system on a base of a new theoretical approach based on the quantum kinetic equation. The approach contains a computational model for a new system of ordinary differential equations with non-linearly dependent on time and problem parameters coefficients.The need to analyze the behavior of solutions of this system of equations in the field of changing several parameters leads to the polynomial computational complexity. The lack of knowledge of the nature of the parametric dependence of solutions requires several iterations of the choice of covering grids. The paper describes the adaptation of this modeling system for use in massively parallel computing systems.

Еще

Numerical simulation, high performance computing, graphene, kinetic equation

Короткий адрес: https://sciup.org/143169791

IDR: 143169791   |   DOI: 10.25209/2079-3316-2019-10-1-47-58

Список литературы Simulation of the effect of short optical pulses on graphene

  • M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S. Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. García de Abajo, J. Biegert. “Ultrafast nonlinear optical response of Dirac fermions in graphene”, Nature Communications, 9 (2018), 1018. DOI: 10.1038/s41467-018-03413-7
  • L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean. “One-dimensional electrical contact to a two-dimensional material”, Science, 342 (2013), pp. 614--617. DOI: 10.1126/science.1244358
  • L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer. “Ballistic transport exceeding 28 μ m in CVD grown graphene”, Nano Lett., 16 (2016), pp. 1387--1391. DOI: 10.1021/acs.nanolett.5b04840
  • J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, W. J. Blau. “Broadband nonlinear optical response of graphene dispersions”, Advanced Materials, 21 (2009), pp. 2430--2435. DOI: 10.1002/adma.200803616
  • Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. McLeod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, D. N. Basov. “Infrared nanoscopy of Dirac plasmons at the graphene-SiO ₂ interface”, Nano Lett., 11 (2011), pp. 4701--4705. DOI: 10.1021/nl202362d
  • A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. Angelis, S. A. Boden, E. Fabrizio, N. I. Zheludev. “Nonlinear graphene metamaterial”, Appl. Phys. Lett., 100 (2012), 181109.
  • DOI: 10.1063/1.4711044
  • M. Garg, M. Zhan, T. T. Luu, H. Lakhotia, T. Klostermann, A. Guggenmos, E. Goulielmakis. “Multi-petahertz electronic metrology”, Nature, 538 (2016), pp. 359--363.
  • DOI: 10.1038/nature19821
  • A. Sommer, E. M. Bothschafter, S. A. Sato, C. Jakubeit, T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst, W. Schweinberger, V. Shirvanyan, V. S. Yakovlev, R. Kienberger, K. Yabana, N. Karpowicz, M. Schultze, F. Krausz. “Attosecond nonlinear polarization and light-matter energy transfer in solids”, Nature, 534 (2016), pp. 86--90.
  • DOI: 10.1038/nature17650
  • T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, P. Hommelhoff. “Light-field-driven currents in graphene”, Nature, 550 (2017), pp. 224--228.
  • DOI: 10.1038/nature23900
  • N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H. Chiu, A. L. Smirl, H. Zhao. “Third harmonic generation in graphene and few-layer graphite films”, Phys. Rev. B, 87 (2013), 121406.
  • DOI: 10.1103/PhysRevB.87.121406
  • S. Hong, J. I. Dadap, N. Petrone, P. Yeh, J. Hone, R. M. Osgood, Optical third-harmonic generation in graphene Optical third-harmonic generation in graphene, Phys. Rev. X, 3 (2013), 021014.
  • DOI: 10.1103/PhysRevX.3.021014
  • G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Ozyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, D. N. Basov. “Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene”, Nature Photonics, 10 (2016), pp. 244--247.
  • DOI: 10.1038/NPHOTON.2016.45
  • P. Bowlan, E. Martinez-Moreno, K. Reimann, T. Elsaesser, M. Woerner. “Ultrafast terahertz response of multilayer graphene in the nonperturbative regime”, Phys. Rev. B, 89 (2014), 041408.
  • DOI: 10.1103/PhysRevB.89.041408
  • S. A. Smolyansky, D. V. Churochkin, V. V. Dmitriev, A. D. Panferov, B. Kampfer. “Residual currents generated from vacuum by an electric field pulse in 2+1 dimensional QED models”, EPJ Web Conf., 138 (2017), 06004.
  • DOI: 10.1051/epjconf/201713806004
  • I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. Edmond Turcu, E. Springate, A. Stohr, A. Kohler, U. Starke, A. Cavalleri. “Snapshots of non-equilibrium Dirac carrier distributions in graphene”, Nature Materials, 12 (2013), pp. 1119--1124.
  • DOI: 10.1038/NMAT3757
  • K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, F. H. L. Koppens. “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating”, Nature Nanotechnology, 10 (2015), pp. 437--443.
  • DOI: 10.1038/NNANO.2015.54
  • D. B. Blaschke, A. V. Prozorkevich, G. Röpke, C. D. Roberts, S. M. Schmidt, D. S. Shkirmanov, S. A. Smolyansky. “Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED”, Eur. Phys. J. D, 55 (2009), 341.
  • DOI: 10.1140/epjd/e2009-00156-y
  • M. Galassi, J. Theiler et all, 1996--2018, GNU Scientific Library-GSL 2.5 documentation GNU Scientific Library-GSL 2.5 documentation, https://www.gnu.org/software/gsl/.
  • S. A. Levenec, T. T. Verevin, A. V. Makhankov, A. D. Panferov, S. O. Pirogov. “Modeling the dynamics of massless charge carriers in a two-dimensional system”, Proceedings of the international scientific conference (July 2 - July 3, 2018, Saratov, Russia), Publ. center “Science”, 2018 URL http://knit2018.sgu.ru/sites/default/files/uploads/papers/242-245.pdf (Russian).
Еще
Статья научная