Синхронизация автогенератора с дробной обратной связью
Автор: Зайцев В.В., Карлов аР.В., Яровой Г.П.
Журнал: Физика волновых процессов и радиотехнические системы @journal-pwp
Статья в выпуске: 1 т.16, 2013 года.
Бесплатный доступ
Предложена модель автоколебательной системы с дифференциальным уравнением движения дробного порядка, находящейся под действием внешнего гармонического сигнала. Решения уравнения движения, соответствующие режиму установившихся синхронизированных колебаний и режиму биений вблизи полосы синхронизации, получены в квазигармоническом приближении. Проанализированы амплитудно-частотные и фазочастотные характеристики синхронизации дробного осциллятора Ван дер Поля. Установлена аналогия между генератором с дробной цепью обратной связи и генератором с запаздывающей обратной связью.
Дробная динамика, автоколебательные системы, гармоническая линеаризация, фазовая синхронизация
Короткий адрес: https://sciup.org/140255788
IDR: 140255788
Список литературы Синхронизация автогенератора с дробной обратной связью
- Тарасов В.Е. Модели теоретической физики с интегро-дифференцированием дробного порядка. М.; Ижевск: Ижевский институт компьютерных исследований, 2011. 568 с.
- Zaslavsky G.M. Hamiltonian Chaos and Fractional Dynamics. Oxford: Oxford University Press, 2005 / Заславский Г.М. Гамильтонов хаос и фрактальная динамика. М.; Ижевск: НИЦ «Регулярная и хаотическая динамика», Ижевский институт компьютерных исследований, 2010. 472 с.
- Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.
- Schafer I., Kempfle S. Impulse responses of fractional damped systems // Nonlinear Dynamics. 2004. V. 38. P. 61-68. URL: http://www.springerlink.com/content/ q18044030l74042l/fulltext.pdf.
- Yuan L., Agrawal O.P. A numerical scheme for dynamic systems containing fractional derivatives // Proc. of ASME Design Engineering Technical Conferences. Atlanta, 1998. URL: http://me.engr.siu.edu/MEEP_old/faculty/agrawal/mech5857.pdf.
- Зайцев В.В., Карлов Ар.В., Яровой Г.П. Динамика автоколебаний дробного томсоновского осциллятора // Физика волновых процессов и радиотехнические системы. 2012. Т. 15. № 1. С. 64-68.
- Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. 4-е изд. М.: Наука, 1974. 504 с.
- Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
- Рубаник В.П. Колебания квазилинейных систем с запаздыванием. М.: Наука, 1969. 288 с.