Синтез и строение аренсульфонатов алкилтрифенилфосфония

Автор: Шарутин Владимир Викторович, Шарутина Ольга Константиновна, Механошина Евгения Сергеевна

Журнал: Вестник Южно-Уральского государственного университета. Серия: Химия @vestnik-susu-chemistry

Рубрика: Химия элементоорганических соединений

Статья в выпуске: 4 т.14, 2022 года.

Бесплатный доступ

Взаимодействием эквимолярных количеств галогенида алкилтрифенилфосфония с мезитиленсульфоновой, 2,5-дихлорбензолсульфоновой и сульфосалициловой кислотами в воде синтезированы аренсульфонаты алкилтрифенилфосфония [Ph3PR][OSO2Ar], R = CH2OMe, Ar = C6H2Me3-2,4,6 (1); R = CH2C(O)Me, Ar = C6H2Me3-2,4,6 (2); R = (CH2)2Br, Ar = C6H3Cl2-2,5 (3); R = (CH2)4COOH, Ar = C6H3(COOH-3)(OH-4) (4), особенности строения которых установлены методом РСА. Кристаллы 1 [С29H31O4PS, M 506,57; сингония моноклинная, группа симметрии P21/c; параметры ячейки: a = 13,228(9), b = 14,530(12), c = 14,192(10) Å; a = 90,00, β = 101,46(3), g = 90,00 град., V = 2673(3) Å3, Z = 4; rвыч = 1,259 г/см3], 2 [С30H31O4PS, M 518,58; сингония моноклинная, группа симметрии P21/c; параметры ячейки: a = 12,569(8), b = 15,888(12), c = 13,819(10) Å; a = 90,00, β = 100,16(2), g = 90,00 град., V = 2716(3) Å3, Z = 4; rвыч = 1,268 г/см3], 3 [С26H22BrCl2O3PS, M 596,28; сингония моноклинная, группа симметрии Cc; параметры ячейки: a = 21,731(15), b = 8,974(6), c = 14,794(9) Å; a = 90,00, β = 117,928(19), g = 90,00 град., V = 2549(3) Å3, Z = 4; rвыч = 1,554 г/см3], 4 [С60H59O16.5P2S2, M 1170,12; сингония триклинная, группа симметрии P-1; параметры ячейки: a = 10,678(7), b = 11,025(5), c = 13,250(7) Å; a = 104,117(19), β = 104,13(2), g = 91,23(3) град., V = 1461,5(14) Å3, Z = 2; rвыч = 1,330 г/см3] состоят из катионов алкилтрифенилфосфония и аренсульфонатных анионов. Атомы фосфора в катионах 1-4 имеют тетраэдрическую координацию [углы CРС варьируют в интервале 104,50(8)°-115,41(9)°]. Длины связей P-C составляют 1,7890(16)-1,823(3) Å, что несколько меньше суммы их ковалентных радиусов (1,88 Å). Расстояния S-O в аренсульфонатных анионах незначительно отличаются и равны 1,441(3)-1,454(2) Å; длины связей S-C составляют 1,7706(15)-1,807(3) Å. Структурная организация кристаллов 1-4 формируется за счет множества слабых водородных связей между катионами и анионами. Аренсульфонатные анионы в комплексе 4 посредством прочных водородных связей структурированы в димеры. Полные таблицы координат атомов, длин связей и валентных углов для структур депонированы в Кембриджском банке структурных данных (№ 2161982 (1), 2162500 (2), 2162502 (3), 2167983 (4), deposit@ccdc.cam.ac.uk; http://www.ccdc. cam.ac.uk).

Еще

Аренсульфонат алкилтрифенилфосфония, синтез, строение, рентгеноструктурный анализ

Короткий адрес: https://sciup.org/147239552

IDR: 147239552   |   DOI: 10.14529/chem220404

Список литературы Синтез и строение аренсульфонатов алкилтрифенилфосфония

  • Пурдела Д., Вылчану Р. Химия органических соединений фосфора. М.: Химия, 1972. 752 с.
  • Бартон Д. Общая органическая химия. Т. 5. Соединения фосфора и серы / Д. Бартон, У.Д. Оллис. М.: Химия, 1983. 720 с.
  • Alkyloxy- and silyloxy-derivatives of P(V) and Sb(V) / G.A. Razuvaev, N.A. Osanova, T.G. Brilkina et al. // J. Organomet. Chem. 1975. Vol. 99, no. 1. P. 93-106. DOI: 10.1016/S0022-328X(00)86365-2.
  • Wang D., Astruc D. The golden age of transfer hydrogenation // Chem. Rev. 2015. Vol. 115. P. 6621-6686. DOI: 10.1021/acs.chemrev.5b00203.
  • The Stille reaction, 38 years later / C. Cordovilla, C. Bartolome, J.M. Martinez-Ilarduya et al. // ACS Catal. 2015. Vol. 5. P. 3040-3053. DOI: 10.1021/acscatal.5b00448.
  • Chong C.C., Kinjo R. Metal-free ст-bond metathesis in 1,3,2-diazaphospholene-catalyzed hydro-boration of carbonyl compounds // Angew. Chem. Int. Ed. 2015. Vol. 127. P. 192-196. DOI: 10.1002/ange.201408760.
  • Карбоксилаты и сульфонаты тетрафенилфосфора. Синтез и строение / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина и др. // Журн. общей химии. 2009. Т. 79. С. 80-89. DOI: 10.1134/S1070363209010125.
  • Синтез и строение карбоксилатов тетрафенилфосфония / В.В. Шарутин, О.К. Шарутина, А.В. Рыбакова и др. // Журн. общей химии. 2018. Т. 88, № 8. С. 1308-1313. DOI: 10.1134/S0044460X18080139.
  • Шарутин В.В., Мукушева Н., Уржумова А.В. Синтез и строение 2,4-динитробензолсульфоната тетрафенилфосфония // Вестник ЮУрГУ. Серия «Химия». 2018. Т. 10, № 2. С. 48-54. DOI: 10.14529/chem180206.
  • Шарутин В.В., Шарутина О.К., Губанова Ю.О. Синтез и строение аренсульфонатов тетрафенилфосфония // Изв. вузов. Химия и хим. технология. 2019. Т. 62, № 2. С. 4-10. DOI: 10.6060/ivkkt.20196202.5823.
  • New organic free radical anions TEMPO-A-CO-(o-; m-; ^СбН^Оз- (A = NH; NCH3; O) and their TTF and/or BEDT-TTF salts / H. Akutsu, K. Masaki, K. Mori et al. // Polyhedron. 2005. Vol. 24. P. 2126-2132. DOI: 10.1016/j.poly.2005.03.023.
  • Tunable GUMBOS-based sensor array for label-free detection and discrimination of proteins / W.I.S. Galpothdeniya, F.R. Fronczek, M. Cong et al. // J. Mater. Chem. B. 2016. Vol. 4, no. 8. P. 1414-1422. DOI: 10.1039/C5TB02038G.
  • A new anionic acceptor, 2-sulfo-3,5,6-trichloro-1,4-benzoquinone and its charge-transfer salts / H. Akutsu, J. Yamada, S. Nakatsuji et al. // CrystEngComm. 2009. Vol. 11, no. 12. P. 2588-2592. DOI: 10.1039/b909519e.
  • Dinuclear calcium complex with weakly NH-0 hydrogen-bonded sulfonate ligands / A. Onoda, Y. Yamada, M. Doi et al. // Inorg. Chem. 2001. Vol. 40, no. 3. P. 516-521. DOI: 10.1021/ic0003067.
  • Anion polarity-induced self-doping in a purely organic paramagnetic conductor, a-a'-(BEDT-TTF)2(PO-CONH-m-C6H4SO3-H2O where BEDT-TTF is te(ethylenedithio)tetrathiafulvalene and PO is the radical 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl / H. Akutsu, K. Ishihara, S. Ito et al. // Polyhedron. 2017. Vol. 136. P. 23-29. DOI: 10.1016/j.poly.2017.02.001.
  • Correlation between metal-insulator transition and hydrogen-bonding network in the organic metal á-(BEDT-TTF)4[2,6-anthracene-67s(sulfonate)](H2O)4 / F. Camerel, G. Le Helloco, T. Guizouarn et al. // Cryst. Growth Des. 2013. Vol. 13, no. 11. P. 5135-5145. DOI: 10.1021/cg401416h.
  • Ferrer E.G., Williams P.A.M., Castellano E.E. On a novel synthesis of 2-sulfonatobenzoic acid by oxidation of thiosalicylic acid catalyzed by copper(II): a structural study // Z. Anorg. Allg. Chem. 2002. Vol. 628. P. 1979-1984. DOI: 10.1002/1521-3749(200209)628:9/10<1979::AID-ZAAC1979-3.0.CO;2-V.
  • Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
  • Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
  • OLEX2: a complete structure solution, refinement and analysis program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea et al. // J. Appl. Cryst. 2009. Vol. 42. P. 339-341. DOI: 10.1107/S0021889808042726.
  • Тарасевич Б.Н. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.
  • Инфракрасная спектроскопия органических и природных соединений: учебное пособие / А.В. Васильев, Е.В. Гриненко, А.О. Щукин и др. СПб.: СПбГЛТА, 2007. 54 с.
  • Covalent radii revisited / B. Cordero, V. Gómez, A.E. Platero-Prats et al. // Dalton Trans. 2008. Vol. 21. P. 2832-2838. DOI: 10.1039/B801115J.
Еще
Статья научная