Синтез и строение производных трис(4-трифторметил-фенил)сурьмы

Бесплатный доступ

Взаимодействием трис (4-трифторметилфенил)сурьмы (1) с дихлоридом и дибромидом меди в ацетоне получены дихлорид (2) и дибромид (3) трис (4-трифторметилфенил)сурьмы (2) с выходами 85 и 92 % соответственно. Окисление 1 трет -бутилгидропероксидом в присутствии 2,5-дифторбензойной кислоты (мольное соотношение 1:1:2) в эфире сопровождается образованием бис (2,5-дифторбензоата) трис (4-трифторметилфенил)сурьмы (4) с выходом 81 %. Соединения 1-4 идентифицированы методами ИК-спектроскопии и рентгеноструктурного анализа. По данным РСА, проведенного при 293 К на автоматическом четырехкружном дифрактометре D8 Quest Bruker (двухкоординатный CCD - детектор, Мо К α-излучение, λ = 0,71073 Å, графитовый монохроматор), кристаллов 1 [C21H12F9Sb, M 557,06; пространственная группа Р- 1, а = 10,858(13), b = 11,072(13), c = 11,432(18) Å, α = 104,91(7)°, β = 113,61(5)°, γ = 106,89(5)°, V = 1090(3) Å3, размеры кристалла 0,34 ´ 0,33 ´ 0,3 мм, интервалы индексов отражений -14 £ h £ 14, -15 £ k £ 15, -15 £ l £ 15, всего отражений 40268, независимых отражений 5862, Rint 0,0477, GOOF 1,049, R 1 = 0,0533, wR 2 = 0,1427, остаточная электронная плотность 1,16/-1,04 e/Å3], 2 [C21H12F9Cl2Sb, M 627,98; пространственная группа Р- 1, а = 7,920(4), b = 14,732(7), c = 21,759(13) Å, α = 75,31(2)°, β = 86,12(3)°, γ = 76,10(2)°, V = 2384(2) Å3, размеры кристалла 0,65 ´ 0,15 ´ 0,11 мм, интервалы индексов отражений -11 £ h £ 11, -21 £ k £ 22, -32 £ l £ 32, всего отражений 138621, независимых отражений 12076, Rint 0,0553, GOOF 1,109, R 1 = 0,0429, wR 2 = 0,0960, остаточная электронная плотность 1,28/-1,06 e/Å3], 3 [C27H18Br2F9Sb, M 794,98; пространственная группа Р- 1, а = 9,129(8), b = 12,120(8), c = 14,454(14) Å, α = 76,41(3)°, β = 85,93(5)°, γ = 68,69(3)°, V = 1448(2) Å3, размеры кристалла 0,49 ´ 0,49 ´ 0,31 мм, интервалы индексов отражений -12 £ h £ 12, -16 £ k £ 16, -19 £ l £ 19, всего отражений 64492, независимых отражений 7337, Rint 0,0545, GOOF 1,014, R 1 = 0,0366, wR 2 = 0,0817, остаточная электронная плотность 0,68/-0,61 e/Å3] и 4 [C35H18F13O4Sb, M 871,27; пространственная группа Р -1, а = 11,575(14), b = 12,017(17), c = 15,041(16) Å, α = 76,33(5)°, β = 69,62(5)°, γ = 64,04(6)°, V = 1755(4) Å3, размеры кристалла 0,31 ´ 0,12 ´ 0,11 мм, интервалы индексов отражений -15 £ h £ 14, -15 £ k £ 15, -19 £ l £ 19, всего отражений 44416, независимых отражений 8033, Rint 0,0393, GOOF 1,072, R 1 = 0,0326, wR 2 = 0,0798, остаточная электронная плотность 1,03/-0,57 e/Å3] атомы сурьмы в 1 имеют координацию тригональной пирамиды, в 2-4 - тригональной бипирамиды с электроотрицательными лигандами в аксиальных положениях. Длины связей Sb-C в 1 равны 2,155(5), 2,164(6) и 2,170(5) Å, валентные углы CSbC составляют 95,04(18), 95,70(17) и 97,20(18)°, что меньше значения тетраэдрического угла и объясняется наличием неподеленной электронной пары на атоме сурьмы. Значения длин связей С-F изменяются в интервале 1,143(12)-1,334(11) Å. Кристаллы 2 состоят из двух типов кристаллографически независимых молекул, геометрические параметры которых незначительно отличаются между собой. Соединение 3 представляет собой сольват (4-CF3C6H4)3SbBr2 ∙ PhH. В кристалле 4 атомы сурьмы координированы атомами кислорода бидентатных карбоксилатных лигандов (расстояния Sb-O и Sb∙∙∙O=C составляют 2,120(3), 2,144(3) и 2,829(5), 2,911(6) Å соответственно).

Еще

Трис(4-трифторметилфенил)сурьма, галогениды меди, 5-дифторбензойная кислота, синтез, строение, рентгеноструктурный анализ

Короткий адрес: https://sciup.org/147241849

IDR: 147241849   |   DOI: 10.14529/chem230304

Список литературы Синтез и строение производных трис(4-трифторметил-фенил)сурьмы

  • Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма, висмут. М.: Наука, 1976. 483 с.
  • Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. химия. 2020. Т. 46, № 10. С. 579 DOI: 10.31857/S0132344X20100011.
  • Brill T.B., Long G.G. // Inorg. Chem. 1972. V. 11. P. 225. DOI: 10.1021/ic50108a002
  • Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Коорд. химия. 2011. Т. 37, № 10. С. 782. EDN: OJHAOP.
  • Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. общ. химии. 2012. Т. 82, № 10. С. 1646. EDN: PCVVYV.
  • Шарутин В.В., Шарутина О.К., Толстогузов Д.С. // Журн. общ. химии. 2014. Т. 84, № 9. С. 1516. EDN: SKCTUP.
  • Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2014. Т. 59, № 4. С. 481. DOI: 10.7868/S0044457X14040217.
  • Артемьева Е.В., Шарутина О.К., Шарутин В.В. и др. // Журн. неорган. химии. 2020. Т. 65, № 1. С. 25. DOI: 10.31857/S0044457X20010031.
  • Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Журн. неорган. химии. 2011. Т. 56, № 7. С. 1129. EDN: NYFYNF.
  • Шарутин В.В., Сенчурин В.С., Шарутина О.К. и др. // Журн. общ. химии. 2011. Т. 81, № 11. С. 1789. EDN: OIXLFD.
  • Андреев П.В., Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Вестник ЮУрГУ. Се-рия «Химия». 2017. Т. 9, № 3. С. 59. DOI: 10.14529/chem170307.
  • Шарутин В.В., Сенчурин В.С., Шарутина О.К., Акулова Е.В. // Журн. общ. химии. 2008. Т. 78. № 12. С. 1999. EDN: PAIKMJ.
  • Sharutin V.V., Sharutina O.K., Pavlushkina I.I. et al. // Russ. J. Gen. Chem. 2000. V. 70, No. 8. P. 1227. EDN: LFYEOV.
  • Bricklebank N., Godfrey S.M., Lane H.P. et al. // J. Chem. Soc. Dalton Trans. 1994. P. 1759. DOI: 10.1039/DT9940001759.
  • Baker L.-J., Rickard C.E.F., Taylor M.J. // J. Chem. Soc. Dalton Trans. 1995. P. 2895. DOI: 10.1039/DT9950002895.
  • Шарутин В.В., Шарутина О.К., Пакусина А.П. и др. // Коорд. химия. 2002. Т. 28, № 12. С. 887.
  • Bruker. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
  • Bruker. SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Display-ing Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
  • Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. DOI: 10.1107/S0021889808042726
  • Тарасевич Б.Н. ИК-спектры основных классов органических соединений. М.: МГУ, 2012. 54 с.
  • Васильев А.В., Гриненко Е.В., Щукин А.О. и др. Инфракрасная спектроскопия органических и природных соединений: учебное пособие / СПб.: СПбГЛТА, 2007. 54 с.
  • Begley M.J., Sowerby D.B. // Acta Crystallogr. 1993. V. 49С, No. 6. P. 1044. DOI: 10.1107/S0108270192011958.
  • Шарутин В.В., Шарутина О.К., Павлушкина И.И. и др. // Журн. общ. химии. 2000. Т. 70, № 8. С. 1308.
  • Cordero B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V. 21. P. 2832. DOI: 10.1039/B801115J
  • Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113, No. 19. P. 5806. DOI: 10.1021/jp811155623.
Еще
Статья научная