Системы леонтьевского типа и прикладные задачи

Бесплатный доступ

В статье представлен комплекс основных результатов, полученных в последние годы в аналитических и численных исследованиях различных задач для систем леонтьевского типа - конечномерного аналога уравнений соболевского типа. Ключевым фактором в достижении определенных успехов стало наличие прикладных задач, изучение каждой из которых представляло самостоятельный интерес. В статье будут представлены три математические модели, в основе которых лежит система леонтьевского типа: вырожденная балансовая динамическая модель производственного предприятия, вырожденная балансовая модель клеточного цикла, математическая модель сложного измерительного устройства. В рамках класса задач будут рассмотрены начальная задача Шоуолтера - Сидорова для системы леонтьевского типа и ряд задач оптимального управления для нее. Кратко будут изложены численные методы решения таких задач, показаны результаты о сходимости приближенных решений к точному. Особое внимание будет уделено задаче восстановления динамически искаженного входного сигнала по наблюдаемому выходному при наличии помех. Математическая модель сложного измерительного устройства построена как система леонтьевского типа, начальное состояние которой отражает условие Шоуолтера - Сидорова. Основным положением теории оптимальных динамических измерений является моделирование искомого входящего сигнала как решения задачи оптимального управления с минимизацией функционала штрафа, в котором оценивается расхождение моделируемого и наблюдаемого выходного (или наблюдаемого) сигналов. Наличие помех на выходе измерительного устройства приводит к необходимости использования в численных алгоритмах цифровых фильтров. Статья носит обзорный характер и дает целостное понимание направлений развития исследований систем леонтьевского типа.

Еще

Система леонтьевского типа, оптимальное управление, условие шоуолтера - сидорова, алгоритмы численного решения, оптимальное динамическое измерение, вырожденная балансовая динамическая модель предприятия

Короткий адрес: https://sciup.org/147237427

IDR: 147237427

Список литературы Системы леонтьевского типа и прикладные задачи

  • Boyarintsev Yu.E., Chistyakov V.F. Algebro-differencial’nye sistemy: metody resheniya i issledovaniya [Algebrodifferential Systems: Methods of Solution and Research]. Novosibirsk, Nauka, 1998. (in Russian)
  • Burlachko I.V., Sviridyuk G.A. An Algorithm for Solving the Cauchy Problem for Degenerate Linear Systems of Ordinary Differential Equations. Computational Mathematics and Mathematical Physics, 2003, vol. 43, no. 11, pp. 1613–1619.
  • Favini A., Sviridyuk G.A., Sagadeeva M.A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises”. Mediterranean Journal of Mathematics, 2016, vol. 13, no. 6, pp. 4607–4621. DOI: 10.1007/s00009-016-0765-x
  • Favini A., Sviridyuk G.A., Manakova N.A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “Noises”. Abstract and Applied Analysis, 2016, vol. 13, pp. 1–8. DOI: 10.1155/2015/697410
  • Gliklikh Yu.E., Mashkov E.Yu. Stochastic Leontieff Type Equations in Terms of Current Velocities of the Solution II. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2016, vol. 9, no. 3, pp. 31–40. DOI: 10.14529/mmp160303
  • Hairer E., Lubich C., Roche M. The Numerical Solution of Differential–Algebraic Systems by Runge–Kutta Methods. Switzerland, Universite de Geneve, 1988.
  • Кeller A.V. [Leontief Type Systems: Classes of Problems with Showalter–Sidorov Initial Condition and Numerical Solutions]. The Bulletin of Irkutsk State University. Series: Mathematics, 2010, vol. 3, no. 2, pp. 30–43. (in Russian)
  • Keller A.V. Numerical Study of Optimal Control Problems for Leontief Type Models. PhD Thesis, Chelyabinsk, 2011. (in Russian)
  • Keller A.V. The Algorithm for Solution of the Showalter–Sidorov Problem for Leontief Type Models. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2011, no. 4 (221), pp. 40–46.
  • Keller A.V. On the Algorithm for Solving Problems of Optimal and Rigid Control. Software and Systems, 2011, no. 3. pp. 38–42.
  • Keller A.V., Shishkina T.A. The Method of Constructing Dynamic and Static Balance Models at the Enterprise Level. Bulletin of the South Ural State University. Series: Economics and Management, 2013, vol. 7, no. 3, pp. 6–10.
  • Keller A.V., Ebel S.I. [On a Degenerate Discrete Balance Dynamic Model of the Cell Cycle]. South Ural Youth School of Mathematical Modelling, 2014, pp. 74–79. (in Russian)
  • Keller A.V. On the Computational Efficiency of the Algorithm of the Numerical Solution of Optimal Control Problems for Models of Leontieff Type. Journal of Computational and Engineering Mathematics, 2015, vol. 2, no. 2, pp. 39–59.
  • Keller A.V. Optimal Dynamic Measurement Method Using the Savitsky–Golay Digital Filter. Differential Equations and Control Processes, 2021, no. 1, pp. 1–15.
  • Keller A.V., Sagadeeva M.A. Convergence of the Spline Method for Solving the Optimal Dynamic Measurement Problem. Journal of Physics, 2021, vol. 2021, article ID: 012074, 6 p. DOI: 10.1088/1742-6596/1864/1/012074
  • Kondyukov A.O. Generalized Model of Incompressible Viscoelastic Fluid in the Earth’s Magnetic Field. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics, 2016, vol. 8, no. 3, pp. 13–21. DOI: 10.14529/mmph160302
  • Kurdjukov А.P., Belov A.A. Deskriptornye sistemy i zadachi upravleniya [Descriptor Systems and Control Problem]. Moscow, Fizmatlit, 2015.
  • Leont’ev V.V. Mezhotraslevaya ekonomika [Intersectoral Economics]. Moscow, Economics, 1997. (in Russian)
  • Manakova N.A. Mathematical Models and Optimal Control of the Filtration and Deformation Processes. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 3, pp. 5–24. DOI: 10.14529/mmp150301
  • Melnikova I.V., Alshanskiy M.A. Stochastic Equations with an Unbounded Operator Coefficient and Multiplicative Noise. Siberian Mathematical Journal, 2017, vol. 58, no. 6, pp. 1052–1066. DOI: 10.1134/S0037446617060143
  • Sagadeeva M.A., Zagrebina S.A., Manakova N.A. Optimal Control of Solutions of a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobolev Type Equation. Evolution Equations and Control Theory, 2019, vol. 8, no. 3, pp. 473–488. DOI: 10.3934/eect.2019023
  • Shestakov A.L., Sviridyuk G.A. A New Approach to Measurement of Dynamically Perturbed Signals. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16 (192), pp. 116–120.
  • Shestakov A.L., Sviridyuk G.A., Khudyakov Yu.V. Dynamic Measurements in “Noise” Spaces. Bulletin of the South Ural State University. Series: Computer Technologies. Control. Electronics, 2013, vol. 13, no. 2, pp. 4–11.
  • Shestakov A.L., Sviridyuk G.A., Keller A.V., Zamyshlyaeva A.A., Khudyakov Yu.V. Numerical Investigation of Optimal Dynamic Measurements. Acta IMEKO, 2018, vol. 7, no. 2, pp. 65–72. DOI: 10.21014/acta_imeko.v7i2.529
  • Shestakov A.L., Keller A.V., Zamyshlyaeva A.A., Manakova N.A., Zagrebina S.A., Sviridyuk G.A. The Optimal Measurements Theory as a New Paradigm in the Metrology. Journal of Computational and Engineering Mathematics, 2020, vol. 7, no. 1, pp. 3–23. DOI: 10.14529/jcem200101
  • Shestakov A.L., Zagrebina S.A., Manakova N.A., Sagadeeva M.A., Sviridyuk G.A. Numerical Optimal Measurement Algorithm under Distortions Caused by Inertia, Resonances, and Sensor Degradation. Automation and Remote Control, 2021, vol. 82, no. 1, pp. 41–50. DOI: 10.1134/S0005117921010021
  • Shestakov A.L., Keller A.V. Optimal Dynamic Measurement Method Using Digital Moving Average Filter. Journal of Physics, 2021, vol. 2021, article ID: 012073, 7 p. DOI: 10.1088/1742-6596/1864/1/012073
  • Shestakov A.L., Zamyshlyaeva A.A., Manakova N.A., Sviridyuk G.A., Keller A.V. Reconstruction of a Dynamically Distorted Signal Based on the Theory of Optimal Dynamic Measurements. Automation and Remote Control, 2021, vol. 82, no. 12, pp. 2143–2154. DOI: 10.1134/S0005117921120067
  • Skripnik V.P. Degenerate Linear Systems. Russian Mathematics, 1982, no. 3, pp. 62–67.
  • Sukacheva T.G., Matveeva O.P. The Problem of the Thermoconvection of an Incompressible Viscoelastic Kelvin–Voigt Fluid of Nonzero Order. Russian Mathematics, 2001, vol. 45, no. 11, pp. 44–51.
  • Sviridyuk G.A., Efremov A.A. Optimal Control for a Class of Degenerate Linear Equations. Doklady Akademii Nauk, 1999, vol. 364, no. 3, pp. 323–325.
  • Sviridyuk G.A., Brychev S.V. Numerical Solution of Systems of Equations of Leontief Type. Russian Mathematics, 2003, vol. 47, no. 8, pp. 44–50.
  • Sviridyuk G.A., Keller A.V. On the the Numerical Solution Convergence of Optimal Control Problems for Leontief Type System. Journal of Samara State Technical University. Series: Physical and Mathematical Sciences, 2011, no. 2 (23), pp. 24–33. (in Russian)
  • Zagrebina S.A., Konkina A.S. The Multipoint Initial-Final Value Condition for the Navier–Stokes Linear Model. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 1, pp. 132–136. DOI: 10.14529/mmp150111
  • Zamyshlyaeva A.A., Muravyev A.S. Computational Experiment for One Mathematical Model of Ion-Acoustic Waves. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2015, vol. 8, no. 2, pp. 127–132. DOI: 10.14529/mmp150211
  • Zamyshlyaeva A.A., Manakova N.A., Tsyplenkova O.N. Optimal Control in Linear Sobolev Type Mathematical Models. Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2020, vol. 13, no. 1, pp. 5–27. DOI: 10.14529/mmp200101
Еще
Статья научная