Скорость движения пассажиров в зависимости от плотности движения людей в часы пик работы метрополитена

Автор: Шабунина Д.Е., Кудрявцев В.С., Чижиков В.П.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 3 (112), 2024 года.

Бесплатный доступ

Объектом исследования является движение пассажиров на станции метрополитена в часы пик. Целью работы является получение зависимости скоростей движения пассажиров различных групп мобильности от плотности людского потока на горизонтальном участке, на лестничной клетке вниз и на лестничной клетке вверх в часы пик работы метрополитена.

Метрополитен, пассажиропоток, экспериментальное исследование, плотность людского потока, подвижная группа пассажиров

Короткий адрес: https://sciup.org/143183401

IDR: 143183401   |   DOI: 10.4123/CUBS.112.2

Список литературы Скорость движения пассажиров в зависимости от плотности движения людей в часы пик работы метрополитена

  • Han T., Zhao J. and Li W. (2020) Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations. Sustainability, 12, 1–18. https://doi.org/10.3390/su12229701
  • Wang L., Xue X., Zhao Z. and Wang Z. (2018) The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. International Journal of Environmental Research and Public Health, 15, 1–24. https://doi.org/10.3390/ijerph15061172
  • Karasev O.I. and Krivtsova A.O. (2019) Assessment of the Level of Metropolitan Cities Transport System Development. Statistics and Economics, 16, 22–31. https://doi.org/10.21686/2500-3925-2019-1-22-31
  • Kalmykov M., Korovyakovskiy E., Polyakov A. and Sholtysek J. (2022) Development of Kupchino Intermodal Passenger Transport Hub. Proceedings of Petersburg Transport University, Petersburg State Transport University, 19, 56–67. https://doi.org/10.20295/1815-588X-2022-19-1-56-67
  • Gao Y. and Zhu J. (2022) Characteristics, Impacts and Trends of Urban Transportation. Encyclopedia, 2, 1168–1182. https://doi.org/10.3390/encyclopedia2020078
  • Billones R.K.C., Guillermo M.A., Lucas K.C., Era M.D., Dadios E.P. and Fillone A.M. (2021) Smart Region Mobility Framework. Sustainability, 13, 1–29. https://doi.org/10.3390/su13116366
  • Peimbert M. and Alcaraz L.D. (2022) Where Environmental Microbiome Meets Its Host: Subway and Passenger Microbiome Relationships. Molecular Ecology, 10, 1–17. https://doi.org/10.1111/mec.16440
  • Wang L., Chen Y. and Wang C. (2020) Research on Evolutionary Model of Urban Rail Transit Vulnerability Based on Computer Simulation. Neural Computing and Applications, 32, 195–204. https://doi.org/10.1007/s00521-018-3793-6
  • Jia F., Jiang X., Li H., Yu X., Xu X. and Jiang M. (2021) Passenger-Oriented Subway Network Capacity Calculation and Analysis Based on Simulation. Transportation Letters, 13, 1–13. https://doi.org/10.1080/19427867.2020.1741778
  • Gusakova N. V. and Filushina K.E. (2018) Optimum Selection of Space-Planning and Design Concepts of Low-Rise Construction. Vestnik TGASU, 20, 71–85. https://doi.org/10.31675/1607-1859-2018-20-3-71-85
  • Bubalo T., Rajsman M. and Škorput P. (2022) Methodological Approach for Evaluation and Improvement of Quality Transport Service in Public Road Passenger Transport. Tehnicki Vjesnik, 29, 139–148. https://doi.org/10.17559/TV-20201031104641
  • Zhang S., Sunindijo R.Y., Loosemore M., Wang S., Gu Y. and Li H. (2020) Identifying Critical Factors Influencing the Safety of Chinese Subway Construction Projects. Engineering, Construction and Architectural Management, 28, 1–41. https://doi.org/10.1108/ECAM-07-2020-0525
  • Zhang N., Liang Y., Zhou C., Niu M. and Wan F. (2022) Study on Fire Smoke Distribution and Safety Evacuation of Subway Station Based on BIM. Applied Sciences, 12, 1–19. https://doi.org/10.3390/app122412808
  • Wei Z., Chu S., Huang Z., Qiu S. and Zhao Q. (2020) Optimization Design of X-Ray Conveyer Belt Length for Subway Security Check Systems in Beijing, China. Sustainability (Switzerland), 12, 1–14. https://doi.org/10.3390/su12052133
  • Qiao Y., Weng Y., Shi X., Zhu Z., Li C., Zhang X. and Liu J. (2023) Fault Tree Analysis for Subway Fire Evacuation with Agent-Based Modeling. Journal of Infrastructure Preservation and Resilience, 4, 1–12. https://doi.org/10.1186/s43065-023-00073-w
  • Yan W., Meng X., Zhou H., Yang C., Chen Q., Oh S.J. and Cui X. (2022) Recent Developments in Evaluation Methods and Characteristics of Comfort Environment in Underground Subway. Frontiers in Built Environment, 8, 1–9. https://doi.org/10.3389/fbuil.2022.1033046
  • Marzouk M. and Abdelaty A. (2014) Monitoring Thermal Comfort in Subways Using Building Information Modeling. Energy and Buildings, 84, 252–257. https://doi.org/10.1016/j.enbuild.2014.08.006
  • Cheng C.H., Chow C.L. and Chow W.K. (2021) A Simulation Study of Tenability for Passengers in a Railway Tunnel with Arson Fire. Tunnelling and Underground Space Technology, 108, 1–17. https://doi.org/10.1016/j.tust.2020.103679
  • Kuznetsov A. V., Shishkina E.L. and Rataj M. (2022) Comparison of Simulation and Analytical Models for the Distribution of a Group of Agents Moving in Random Directions. Mathematical Methods in the Applied Sciences, 46, 8560–8572. https://doi.org/10.1002/mma.9000
  • Sakai T., Romano Alho A., Bhavathrathan B.K., Chiara G.D., Gopalakrishnan R., Jing P., Hyodo T., Cheah L. and Ben-Akiva M. (2020) SimMobility Freight: An Agent-Based Urban Freight Simulator for Evaluating Logistics Solutions. Transportation Research Part E: Logistics and Transportation Review, 141, 1–36. https://doi.org/10.1016/j.tre.2020.102017
  • Fernandes J.V., Henriques E., Silva A. and Pimentel C. (2017) Modelling the Dynamics of Complex Early Design Processes: An Agent-Based Approach. Design Science, 3, 1–34. https://doi.org/10.1017/dsj.2017.17
  • Kim I., Galiza R. and Ferreira L. (2013) Modeling Pedestrian Queuing Using Micro-Simulation. Transportation Research Part A: Policy and Practice, 49, 232–240. https://doi.org/10.1016/j.tra.2013.01.018
  • Zheng X., Li H.Y., Meng L.Y., Xu X.Y. and Yang Y.H. (2017) Simulating Queuing Behaviour of Pedestrians in Subway Stations. Institution of Civil Engineers: Transport, 170, 1–8. https://doi.org/10.1680/jtran.16.00084
  • Akhter S., Ahsan M.N. and Sadeek Quaderi S.J. (2019) Modeling Ant Colony Optimization for Multi-Agent Based Intelligent Transportation System. International Journal of Advanced Computer Science and Applications, 10, 277–284. https://doi.org/10.14569/ijacsa.2019.0101039
  • Dashamirov F. and Javadli U. (2021) Development of a Methodology for Creatıng an Agent Based Model of Transport Hubs in Suburban Area. Problems of Logistics, Management and Operation, 153–156. https://plmo.cyber.az/2021/papers/153-156.pdf
  • Ballano A., Al-Rahamneh A., Serrano-Hernandez A. and Faulin J. (2023) Agent-Based Modelling and Simulation for Hub and Electric Last Mile Distribution in Vienna. Computer Science, 220, 718–723. https://doi.org/10.1016/j.procs.2023.03.094
  • Zou Q., Fernandes D.S. and Chen S. (2021) Agent-Based Evacuation Simulation from Subway Train and Platform. Journal of Transportation Safety and Security, 13, 1–22. https://doi.org/10.1080/19439962.2019.1634661
  • Russian Normative Standard SP 120.13330.2022. Subways. https://docs.cntd.ru/document/1300886470
  • Dembinski H., Schmelling M. and Waldi R. (2019) Application of the Iterated Weighted Least-Squares Fit to Counting Experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 940, 135–141. https://doi.org/10.1016/j.nima.2019.05.086
  • Willberg M., Zingerle P. and Pail R. (2020) Integration of Airborne Gravimetry Data Filtering into Residual Least-Squares Collocation: Example from the 1 Cm Geoid Experiment. Journal of Geodesy, 94, 1–17. https://doi.org/10.1007/s00190-020-01396-2
  • Ovchinnikov A., Krasnochub E. and Bronstein V. (2010) Processing of Experimental Data by the Least Squares Method. Bulletin of SGAU, 227–237. https://cyberleninka.ru/article/n/obrabotka-eksperimentalnyh-dannyh-metodom-naimenshih-kvadratov/viewer
Еще
Статья научная