Sobolev type mathematical models with relatively positive operators in the sequence spaces
Автор: Solovyova N.N., Zagrebina S.A., Sviridyuk G.A.
Рубрика: Математика
Статья в выпуске: 4 т.9, 2017 года.
Бесплатный доступ
In the sequence spaces which are analogues of Sobolev function spaces we consider mathematical model whose prototypes are Barenblatt - Zheltov - Kochina equation and Hoff equation. One should mention that these equations are degenerate equations or Sobolev type equations. Nonexistence and nonuniqueness of the solutions is the peculiar feature of such equations. Therefore, to find the conditions for positive solution of the equations is a topical research direction. The paper highlights the conditions sufficient for positive solutions in the given mathematical model. The foundation of our research is the theory of the positive semigroups of operators and the theory of degenerate holomorphic groups of operators. As a result of merging of these theories a new theory of degenerate positive holomorphic groups of operators has been obtained. The authors believe that the results of a new theory will find their application in economic and engineering problems.
Sobolev sequence spaces, sobolev type models, degenerate positive holomorphic groups of operators
Короткий адрес: https://sciup.org/147158954
IDR: 147158954 | DOI: 10.14529/mmph170404
Список литературы Sobolev type mathematical models with relatively positive operators in the sequence spaces
- Баренблатт, Г.И. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах/Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина//Прикладная математика и механика. -1960. -Т. 24, № 5. -С. 58-73.
- Hallaire, M. Soil water movement in the film and vapor phase under the influence of evapotranspiration. Water and its conduction insoils/M. Hallaire//Proceedings of XXXVII Annual Meeting of the Highway Research Board, Highway Research Board Special Report. -1958. -Vol. 40. -P. 88-105.
- Chen, P.J. On a Theory of Heat Conduction Involving Two Temperatures/P.J. Chen, M.E. Gurtin//Journal of Applied Mathematics and Physics (ZAMP). -1968. -Vol. 19, Issue 4. -P. 614-627.
- Hoff, N.J. Creep buckling/N.J. Hoff//The Aeronautical Quarterly. -1956. -Vol. 7, no. 1. -P. 1-20.
- Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators/G.A. Sviridyuk, V.E. Fedorov. -Utrecht; Boston; Köln; Tokyo: VSP, 2003. -216 p.
- Banasiak, J. Perturbations of Positive Semigroups with Applications/J. Banasiak, L. Arlotti. -Springer-Verlag, London Limited, 2006. -438 p.
- Chekroun, M.D. The Stampacchia maximum principle for stochastic partial equations and applications/M.D. Chekroun, E. Park, R. Temam//Journal of Differential Equations. -2016. -Vol. 260, Issue 3. -P. 2926-2972.
- Свиридюк, Г.А. Задача Шоуолтера -Сидорова как феномен уравнений соболевского типа/Г.А. Свиридюк, С.А. Загребина//Известия Иркутского государственного университета. Серия «Математика». -2010. -Т. 3, № 1. -С. 104-125.
- Свиридюк, Г.А. Динамические модели соболевского типа с условием Шоуолтера-Сидорова и аддитивными «шумами»/Г.А. Свиридюк, Н.А. Манакова//Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование». -2014. -Т. 7, № 1. -С. 90-103.
- Zagrebina, S.A. A multipoint initial-final value problem for a linear model of plane-parallel thermal convection in viscoelastic incompressible fluid/S.A. Zagrebina//Вестник Южно-Уральского государственного университета. Серия «Математическое моделирование и программирование». -2014. -Т. 7, № 3. -С. 5-22.
- Favini, A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of "noises"/A. Favini, G.A. Sviridyuk, N.A. Manakova//Abstract and Applied Analysis. -2015. -Vol. 2015. -Article ID 697410.
- Favini, A. Linear Sobolev type equations with relatively p-radial operators in space of "noises"/A. Favini, G.A. Sviridyuk, M.A. Sagadeeva//Mediterranian Journal of Mathematics. -2016. -Vol. 13, no. 6. -P. 4607-4621.
- Favini, A. One class of Sobolev type equations of higher order with additive "white noise"/A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva//Communications on Pure and Applied Analysis. -2016. -Vol. 15, no. 1. -P. 185-196.