Solving Maxwell's Equations for AC Wire
Автор: Solomon I. Khmelnik
Журнал: Доклады независимых авторов @dna-izdatelstwo
Рубрика: Physics
Статья в выпуске: 52, 2021 года.
Бесплатный доступ
It is indicated that an electromagnetic wave propagates in an AC wire. The well-known solution of Maxwell's equations in the form of a wave equation is not acceptable, if only because in such a solution the law of conservation of energy is fulfilled only on average.
Короткий адрес: https://sciup.org/148323943
IDR: 148323943
Текст научной статьи Solving Maxwell's Equations for AC Wire
At present, the applicability of Maxwell's equations to all phenomena of electrodynamics and electrical devices without exception is indisputable. However, it is not always possible to describe these phenomena and devices in the form of a solution to the complete system of Maxwell's equations, and not a certain subset of this system. The same applies to the AC wire. Below, an electromagnetic wave in an alternating current wire is described as a solution to the full system of Maxwell's equations. It is important to note that the well-known solution of Maxwell's equations in the form of a wave equation is not acceptable, if only because in such a solution the energy conservation law is fulfilled only on average.
Maxwell's equations for vacuum cannot be used directly for AC wire, since the wire has conduction currents and dielectric constant. In the case under consideration, Maxwell's equations have the form:
In the system of cylindrical coordinates, these equations have the form:
E r । dE- ^ । 1 дЕ ф + dE ^ о r dr r дф dz , |
(1) |
|
1 dEz дЕ ф _ .to dHr г дф dz c dt ’ |
(2) |
|
dEr dEz _ .to dH ф dz dr c dt ’ |
(3) |
|
Е ф + dE ф 1 dEr _ .to dHz r dr r dф c dt ’ |
(4) |
|
H r + dH r . 1 dH ф + dH z _ о r dr r dф dz ’ |
(5) |
|
1 dH z dH ф _ I r dф dz r ’ |
(6) |
|
dHT dHz |
(7) |
|
—r--z _ I dz dr ^ , |
||
H ф . dH ф _ 1 dH r _ i r dr r dф z ’ |
(8) |
|
lr . d^ r . 1 d^ . d^z __ 0 r dr r dф dz ’ |
(9) |
|
We will search for unknown functions in the following form: |
||
Hr . _ hr (r)co , |
(10) |
|
Н Ф . _ к ф (r) si , |
(11) |
|
H z ._ h z (r)si , |
(12) |
|
Er . _ er (r)si , |
(13) |
|
Е ф ._ е ф (r)co , |
(14) |
|
E z ._ e z (r)co , |
(15) |
|
Ir . _ Vr (r)sic , |
(16) |
|
1 ф . _ ! ф (r) coc , |
(17) |
|
I z ._ i-z (r)sic , |
(18) |
|
where |
co _ cos( окр + /z) cos( cot) , |
(19) |
si _ sin( ор + /z) sin( ot) , |
(20) |
|
coc _ cos( ор + /z) sin( ot) , |
(21) |
|
sic _ sin( ар + /z) cos( cot) , |
(22) |
By direct substitution, one can make sure that functions (10-18)
transform the system of equations (1 -9) with four arguments г, ф, z, t into
a system of equations with one argument and unknown functions |
|
h(r), e(r), i(r) . This system of equations is as follows: |
|
er(r) е ф (г) r + e r (r) Фг a x- e z (r) = 0 , |
(21) |
- 1 -e z (r) a + е ф (r) X -~h r = 0 , |
(22) |
e r ( r)x — e ‘ (r) + ^h ф = 0, |
(23) |
V' e ф (r)-^ -c + "51 h z = 0, |
(24) |
r r + ^ r (r) + Ф г a + x - h z (r) = 0 , |
(25) |
1 h z ( r) a -h , ( r) - i r ( r) = 0 , |
(26) |
-h r ( r)x — h z M-i , (r) = 0 , |
(27) |
— + h. , (r) + ^ a-i z (r) = 0 . |
(28) |
^ r ) + i r (г) + Ф г a + X -i z (r) =0 . |
(29) |
Next, we introduce into consideration the coefficient k, which connects |
|
the functions h and e : |
|
hr = ker , |
(30) |
h , ke , . |
(31) |
hz = -kez. |
(32) |
We perform the change of variables according to (30-32) in |
equations (21- |
29) and rewrite them |
|
er б ф — + e r - —a -xe z = 0 , |
(33) |
ez "1 - — a + e , x - — ke r = 0 , |
(34) |
-e z + e r X-^t^e , = 0 , |
(35) |
~ + e^ - — a + k — ez = 0 , r ^ r c z |
(36) |
k — + ker + k — a - kxez = 0 , |
(37) |
-k^a + ke , x-i r = 0 , |
(38) |
ke z - ke r X-i , = 0 , |
(39) |
—k “ — ke^ + k ~ a — iz = 0 , r ^ r z |
(40) |
■ ; + i r + " 7 a + x - i z = 0 . |
(41) |
Note that equations (33) and (40) coincide for |
|
i z = -kxe z |
(42) |
Note that equations (34) and (38) coincide for |
|
iT = — ker . r c r |
(43) |
Physics |
|
Note th |
at equations (35) and (39) coincide for 1 ф = k ^^- в ф . (44) |
Note th |
at equations (36) and (40) coincide for i z = -k^e z . (45) |
Из (42, |
45) находим: y-to X = — (46) |
Conside Finally, T equation (33-36) er , в ф , e |
ring (33, 41, 44, 45), we note that equations (33, 41) coincide. equations (33) and (37) coincide. us, equations (37-41) can be excluded from the system of s and replaced by conditions (42-46). The remaining 4 equations are a system of differential equations with three unknowns z . Let's rewrite (33-36) taking into account (46) and get: 7 + e 7 —7«— X e z = 0 , (47)
|
Adding |
(48, 49), we get: |
or |
—в z — 7® + / ( 1 — k ) (в ф +в г ) = 0 , (51) (в ф + в г ) = z ( 1-fc ) (^ + r в Z ) , (52) |
Adding 1 r |
(47, 50), we get: (в ф +в г ) + — (в ф + в г ) — т(в ф +в г ) — ( 1 — k ) /в z = 0 |
or
-
-7 (вф+ег) + 1-^ (вф+er) - (1 - k)xez = 0 (53)
Combining (52, 53), we get:
7в . le\ + k—L + 2е)
/(1 — k) dr V z r ' r /(1 — k) V z r '
- (1 — k)/ez = 0
or
® ® 1 — a(.
(ez + Tez—r2ez) + —— (ez + 7^) — (1 -<№ = 0
or
.. . /a , 1-a\ , ( a , 1-a a ,, ,42 2^ л
ez + (7 + —j вz + (-72 + — "7 — (1 — k) X ) ez = 0 (54)
(a — 1)ara 2 +—ra 1---ra = 0
r r2
or
(a — 1)a + a — a2 = 0, which is an identity.
It is important to note that for a < 0 it follows from (57) that the strength increases with increasing radius, which can explain the skin effect without additional assumptions.
Now we find e ^ and er , assuming that
еф = AN r a-1 , eT = AMr a-1 , |
(58) (59) |
where M and N are unknowns. Substituting (58, 59) in (48, 49), we |
find: |
где M и N - неизвестные. Подставляя (58, 59,57в) в (48, 49), находим: — a Ar 2-a + xAN r a-1 — xkAMr a-1 = 0 , — aAr a-1 + xAMr 1-a — kxAN r a-1 = 0 or |
|
—a + xN — xkM = 0 , |
(60) |
It is seen that N = M . Hence,
or a N = M = ——. /(1-k) Thus, |
(61) (60) (62) |
a er = e(0 = A— —— r 1 a . 7 V x(1-k) Obviously, |
(64) |
i = e/p, where p is the resistivity. Moreover, from (42, 46) we find: |
(66) |
1 . p = —5 . Since the values of ρ are known, we obtain: |
(67) |
к = — —. XP |
(68) |
From (43-46, 68) we get: i z = e z / Р , |
(69) |
i-r = -e z / Р , |
(70) |
i p = -e z / p . |
(71) |
So, the solution has the form of equations (10-22), where
• the functions e(r) are defined by (64, 57),
• the functions i(r) are defined by (69,70,71),
• the functions h(r) are defined by (30, 31, 32, 68).
3. Energy flows
Let's find another voltage on a wire with a length L
U = f^ Ezdz = ez f 0 co • dz . (72)
The flux density of electromagnetic energy - the Poynting vector is determined by the formula
S = η E × H , (1)
where
η = c 4 π .
In cylindrical coordinates r, ф, z , the electromagnetic energy flux density has three components Sr , S ф , Sz directed along the radius, along the circumference, along the axis, respectively [1]. They are determined by the formula
[ S/l FE p H z -E z H pl S = S p = n(E x H) = T]\EzH r - E r H z . [ S z_| [E r H p -E p Hj |
(3) |
or, taking into account the previous formulas, |
|
S r = u(e p h z - e z ^ p )co • si, |
(4) |
Sp = p(ezhr co 2 — erhz si 2 ), |
(5) |
Sz = p{erhp si 2 — ephr co 2 ). |
(6) |
Substituting here (2.33-2.35, 2.68-2.70), we get: |
|
Sr = u(—kepez + kezep)co • si , |
(7) |
Sp = T](kezer co 2 + kerezsi 2 ) = T]kerez , |
(8) |
Sz = T]^—kerepsi 2 — keper co 2 ) = —T]kerep . |
(9) |
Substituting (2.64, 2.65) here, we find that there are two energy fluxes in the wire with a density
S p = T]kA 2 21^7-2“ 1 , (10)
Sz = -n kA22^r“--4 (11)
Given these known densities, the unknowns A and α can be found from (10, 11).
Список литературы Solving Maxwell's Equations for AC Wire
- S.I. Khmelnik. Inconsistency Solution of Maxwell's Equations. 16th edition, 2020, ISBN 978-1-365-23941-0. Printed in USA, Lulu Inc., ID 19043222, http://doi.org/10.5281/zenodo.3833821