Some inverse problems for convection-diffusion equations

Бесплатный доступ

We examine the well-posedness questions for some inverse problems in the mathematical models of heat-and-mass transfer and convection-diffusion processes. The coefficients and right-hand side of the system are recovered under certain additional overdetermination conditions, which are the integrals of a solution with weights over some collection of domains. We prove an existence and uniqueness theorem, as well as stability estimates. The results are local in time. The main functional spaces used are Sobolev spaces. These results serve as the base for justifying of the convergence of numerical algorithms for inverse problems with pointwise overdetermination, which arise, in particular, in the heat-and-mass transfer problems on determining the source function or the parameters of a medium.

Еще

Parabolic system, convection-diffusion, heat-and-mass transfer, inverse problem, control problem, boundary value problem, well-posedness

Короткий адрес: https://sciup.org/147159291

IDR: 147159291   |   DOI: 10.14529/mmp140403

Список литературы Some inverse problems for convection-diffusion equations

  • Алексеев, Г.В. Оптимизация в стационарных задачах тепломассопереноса и магнитной гидродинамики/Г.В. Алексеев. -М.: Науч. мир, 2010.
  • Belov, Ya.Ya. Inverse Problems for Parabolic Equations/Ya.Ya. Belov. -Utrecht: VSP, 2002.
  • Babeshko, O.M. On taking into account the types of sources and settling zones of pollutants/O.M. Babeshko, O.V. Evdokimova, S.M. Evdokimov//Doklady Mathematics. -2000. -V. 61, N 2. -P. 283-285.
  • Калинина, Е.А. Численное исследование обратной задачи восстановления плотности источника двумерного нестационарного уравнения конвекции-диффузии/Е.А. Калинина//Дальневосточный математический журнал. -2004. -Т. 5, № 1. -С. 89-99.
  • Обратная задача восстановления плотности источника для уравнения конвекции-диффузии/Ю.А. Криксин, С.Н. Плющев, Е.А. Самарская, В.Ф. Тишкин//Математическое моделирование. -1995. -Т. 7, № 11. -С. 95-108.
  • Iskenderov, A.D. Inverse Problem for a Linear System of Parabolic Equations/A.D. Iskenderov, A.Ya. Akhundov//Doklady Mathematics. -2009. -Т. 79, N 1. -P. 73-75.
  • Ismailov, M.I. Inverse Problem of Finding the Time-Dependent Coefficient of Heat Equation from Integral Overdetermination Condition Data/M.I. Ismailov, F. Kanca//Inverse Problems In Science and Engineering. -2012. -V. 20, N 24. -P. 463-476.
  • Ivanchov, M.I. Inverse Problem of Simulataneous Determination of Two Coefficients in a Parabolic Equation/M.I. Ivanchov//Ukrainian Mathematical Journal. -2000. -V. 52, N 3. -P. 379-387.
  • Jing, Li. An Inverse Coefficient Problem with Nonlinear Parabolic Equation/Jing Li, Youjun Xu//Journal of Applied Mathematics and Computing. -2010. -V. 34, N 1-2. -P. 195-206.
  • Kamynin, V.L. An Inverse Problem for a Higher-Order Parabolic Equation/V.L. Kamynin, E. Franchini//Mathematical Notes. -1998. -V. 64, N 5. -P. 590-599.
  • Kerimov, N.B. An Inverse Coefficient Problem for the Heat Equation in the Case of Nonlocal Boundary Conditions/N.B. Kerimov, M.I. Ismailov//Journal of Mathematical Analysis and Applications. -2012. -V. 396, issue 2. -P. 546-554.
  • Кожанов, А.И. Параболические уравнения с неизвестным коэффициентом, зависящим от времени/А.И. Кожанов//Журнал вычислительной математики и математической физики. -2005. -Т. 45, № 12. -C. 2168-2184.
  • Vasin, I.A. On the Asymptotic Behavior of Solutions to Inverse Problems for Parabolic Equations/I.A. Vasin, V.L. Kamynin//Siberian Mathematical Journal. -1997. -V. 38, N 4. -P. 647-662.
  • Prilepko, A.I. Methods for solving inverse problems in Mathematical Physics/A.I. Prilepko, D.G. Orlovsky, I.A. Vasin. -New-York: Marcel Dekker, Inc. 1999.
  • Tryanin, A.P. Determination of Heat-Transfer Coefficients at the Inlet into a Porous Body and Inside It by Solving the Inverse Problem/A.P. Tryanin//Journal of Engineering Physics. -1987. -V. 52, N 3. -P. 346-351.
  • Dehghan, M. Method of Lines Solutions of the Parabolic Inverse Problem with an Overspecification at a Points/M. Dehghan, F. Shakeri//Numerical Algorithms. -2009. -V. 50, N 4. -P. 417-437.
  • Pyatkov, S.G. On Some Classes of Coefficient Inverse Problems for Parabolic Systems of Equations/S.G. Pyatkov, M.L. Samkov//Sib. Adv. in Math. -2012. -V. 22, N 4. -P. 287-302.
  • Pyatkov, S.G. On Some Classes of Inverse Problems for Parabolic Equations/S.G. Pyatkov//Journal of Inverse Ill-Posed problems. -2011. -V. 18, N 8. -P. 917-934.
  • Ivanchov M. Inverse Problems for Equations of Parabolic Type Math. Studies. Monograph Series. V. 10/M. Ivanchov. -Lviv: WNTL Publishers, 2003.
  • Кабанихин, С.И. Обратные и некоректные задачи/С.И. Кабанихин. -Новосибирск: Сибирское научное издательство, 2009. -457 с.
  • Triebel, H. Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, 18/H. Triebel. -Amsterdam: North-Holland Publishing, 1978.
  • Amann, H. Compact Embeddings of Vector-Valued Sobolev and Besov Spaces/H. Amann//Glasnik matematicki. -2000. -V. 35, (55). -P. 161-177.
  • Amann, H. Operator-Valued Foutier Multipliers, Vector-Valued Besov Spaces and Applications/H. Amann//Mathematische Nachrichten. -1997. -V. 186, N 1. -P. 5-56.
  • Amann, H. Linear and Quasilinear Parabolic Problems. V. I./H. Amann. -Basel; Boston; Berlin: Birkhauser Verlag, 1995.
  • Ладыженская, О.А. Линейные и квазилинейные уравнения параболического типа/О.А. Ладыженская, В.А. Солонников, Н.Н. Уральцева. -М.: Наука, 1967.
  • Ладыженская, О.А. Линейные и квазилинейные уравнения эллиптического типа/О.А. Ладыженская, Н.Н. Уральцева. -М.: Наука, 1973.
  • Алифанов, O.M. Обратные задачи сложного теплообмена/O.M. Алифанов, E.A. Артюхов, A.В. Ненароком. -Москва: Янус-К, 2009.
  • Alifanov, O.M. Inverse Heat Transfer Problems/O.M. Alifanov. -Springer-Verlag. Berlin Heidelberg. 1994.
  • Ozisik, M.N. Inverse Heat Transfer/Ozisik M.N., Orlando H.A.B. -New-York: Taylor & Francis, 2000.
Еще
Статья научная