Some mathematical models with a relatively bounded operator and additive "white noise" in spaces of sequences

Бесплатный доступ

The article is devoted to the research of the class of stochastic models in mathematical physics on the basis of an abstract Sobolev type equation in Banach spaces of sequences, which are the analogues of Sobolev spaces. As operators we take polynomials with real coefficients from the analogue of the Laplace operator, and carry over the theory of linear stochastic equations of Sobolev type on the Banach spaces of sequences. The spaces of sequences of differentiable "noises" are denoted, and the existence and the uniqueness of the classical solution of Showalter - Sidorov problem for the stochastic equation of Sobolev type with a relatively bounded operator are proved. The constructed abstract scheme can be applied to the study of a wide class of stochastic models in mathematical physics, such as, for example, the Barenblatt - Zheltov - Kochina model and the Hoff model.

Еще

Sobolev type equations, banach spaces of sequences, nelson - gliklikh derivative, "white noise"

Короткий адрес: https://sciup.org/147159458

IDR: 147159458   |   DOI: 10.14529/mmp170401

Список литературы Some mathematical models with a relatively bounded operator and additive "white noise" in spaces of sequences

  • Баренблатт, Г.И. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах/Г.И. Баренблатт, Ю.П. Желтов, И.Н. Кочина//Прикладная математика и механика. -1960. -Т. 24, № 5. -С. 58-73.
  • Hoff, N.J. Creep Buckling/N.J. Hoff//The Aeronautical Quarterly. -1956. -V. 7, № 1. -P. 1-20.
  • Келлер, А.В. Голоморфные вырожденные группы операторов в квазибанаховых пространствах/А.В. Келлер, Д.К. Аль-Делфи//Вестник ЮУрГУ. Серия: Математика. Механика. Физика. -2015. -Т. 7, № 1. -С. 20-27.
  • Zamyshlyaeva, A.A. On Integration in Quasi-Banach Spaces of Sequences/A.A. Zamyshlyaeva, A.V. Keller, M.A. Sagadeeva//Journal of Computational and Engineering Mathematics. -2015. -V. 2, № 1. -P. 52-56.
  • Solovyova, N.N. Sobolev Type Mathematical Models with Relatively Positive Operators in the Sequence Spaces/N.N. Solovyova, S.A. Zagrebina, G.A. Sviridyuk//Вестник ЮУрГУ. Серия: Математика. Механика. Физика. -2017. -Т. 9, № 4. -С. 27-35.
  • Al-Isawi, J.K.T. Computational Experiment for One Class of Evolution Mathematical Models in Quasi-Sobolev Spaces/J.K.T. Al-Isawi, A.A. Zamyshlyaeva//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2016. -Т. 9, № 4. -С. 141-147.
  • Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators/G.A. Sviridyuk, V.E. Fedorov. -Utrecht; Boston; Köln; Tokyo: VSP, 2003. -216 p.
  • Свиридюк, Г.А. Динамические модели соболевского типа с условием Шоуолтера -Сидорова и аддитивными шумами/Г.А. Свиридюк, Н.А. Манакова//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2014. -Т. 7, № 1. -С. 90-103.
  • Favini, A. Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of noises/A. Favini, G.A. Sviridyuk, N.A. Manakova//Abstract and Applied Analysis. -2015. -V. 2015. -Article ID 697410. -8 p.
  • Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive White Noise/A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva//Communications on Pure and Applied Analysis. -2016. -V. 15, № 1. -P. 185-196.
  • Favini, A. Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of Noises/A. Favini, G.A. Sviridyuk, M.A. Sagadeeva//Mediterranian Journal of Mathematics. -2016. -V. 13, № 6. -P. 4607-4621.
  • Sviridyuk, G.A. The Barenblatt -Zheltov -Kochina Model with Additive White Noise in Quasi-Sobolev Spaces/G.A. Sviridyuk, N.A. Manakova//Journal of Computational and Engineering Mathematics. -2016. -V. 3, № 1. -P. 61-67.
  • Gliklikh, Yu.E. Investigation of Leontieff Type Equations with White Noise Protect by the Methods of Mean Derivatives of Stochastic Processes//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2012. -№ 27 (286), вып. 13. -С. 24-34.
  • Nelson, E. Dynamical Theories of Brownian Motion/E. Nelson. -Princeton: Princeton University Press, 1967.
  • Kovacs, M. Introduction to Stochastic Partial Differential Equations/M. Kovacs, S. Larsson//Proceedings of New Directions in the Mathematical and Computer Sciences, National Universities Commission, Abuja, Nigeria, October 8-12, 2007. V. 4. -Lagos: Publications of the ICMCS, 2008. -P. 159-232.
  • Melnikova, I.V. Abstract Stochastic Equations II. Solutions in Spaces of Abstract Stochastic Distributions/I.V. Melnikova, A.I. Filinkov, M.A. Alshansky//Journal of Mathematical Sciences. -2003. -V. 116, № 5. -P. 3620-3656.
Еще
Статья научная