Some subordination results for certain class with complex order defined by Salagean type q-difference operator

Автор: Aouf Mohamed K., Seoudy Tamer M.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.22, 2020 года.

Бесплатный доступ

The theory of the basic quantum calculus (that is, the basic q-calculus) plays important roles in many diverse areas of the engineering, physical and mathematical science. Making use of the basic definitions and concept details of the q-calculus, Govindaraj and Sivasubramanian [10] defined the Salagean type q-difference (q-derivative) operator. In this paper, we introduce a certain subclass of analytic functions with complex order in the open unit disk by applying the Salagean type q-derivative operator in conjunction with the familiar principle of subordination between analytic functions. Also, we derive some geometric properties such as sufficient condition and several subordination results for functions belonging to this subclass. The results presented here would provide extensions of those given in earlier works.

Еще

Q-производный оператор, analytic function, subordinating factor sequence, hadamard product (or convolution), q-derivative operator, salagean operator

Короткий адрес: https://sciup.org/143172467

IDR: 143172467   |   DOI: 10.46698/q5183-3412-9769-d

Текст научной статьи Some subordination results for certain class with complex order defined by Salagean type q-difference operator

Let A denote the class of functions of the form:

∞ f (z) = z + ^ ak zk,                               (1.1)

k =2

which are analytic in the open unit disc U = {z E C : | z | < 1 } . We also denote by K the class of functions f A that are convex in U. For two functions f and g, analytic in U, we say that f is subordinated to g in U, written f (z) ^ g (z), if there exists a Schwarz function w (z), which (by definition) is analytic in U with w (0) = 0 and | w (z) | < 1, such that f (z) = g (w (z)) , z E U. Furthermore, if the function g is univalent in U, then (see [1, 2])

f (z) ^ g(z) ^ f (0) = g(0) and f ( U ) C g( U ).

Given two functions f, g G A , where f is given by (1.1) and g is given by

g(z) = z + ^bk zk , k=2

(1.2)

the Hadamard product (or convolution ) f * g is defined by

(f * g) (z) = z + f akbk z k = (g * f) (z).

k =2

For 0 < q < 1, the q - derivative of a function f G A is defined by (see [3-9])

D q f(z) =

f (0), f ( qz )- f (z)

(q-1)z ,

z = 0, z = 0,

(1.3)

and Dqf (z) = D q (D q f(z)). From (1.3), we have

Dqf (z) = 1+^[k^q k =2

k-A akz    ,

(1.4)

where

Ml = 11

q k q

1 + q + q 2

+ . . . + q k - l ,

(1.5)

and

n \         f(qz) — f(z)        \ lim Dqf (z) = lim --7----7Г---- = f (z), q zl                q zl (q — 1)z for a function f which is differentiable in a given subset of C.

For f G A , Govindaraj and Sivasubramanian [10] defined the Salagean type q-difference operator as follows:

D 0 f (z) = f (z),

D\f (z) = zDqf (z) = z + ^[k]q akzk, k=2

Dqf (z) = zDq (D l f (z) ) = z + f; ([k] q ) 2 ak zk , D qn f (z) = zDq ( nn -1 f (z) ) , n G N = { 1, 2, 3,... } .

It is easily see that

Dqf (z) = z + f ([k] q ) n akzk,  n G N o = N U { 0 } .

(1.6)

k=2

We note that lim Dnf (z) = Dnf (z) = z + f kn akzk,  n G No.

k=2

The differential operator D n was introduced and studied by Salagean [11] (see also Srivastava and Aouf [12]).

Let Gn (A, b, A, B) denote the subclass of A consisting of functions f (z) which satisfy

1 + H(1 A) D n f^z) + AD q ( D n f (z) ) 1] ^ 1 + A U                                        +z

(1.7)

or satisfying

(1 A) f- + AD q ( D n f (z) ) 1

f ) + ADq ( D n f (z))] [B + (A B) b]

<

1,

(1.8)

b E C * = C \{ 0 } ; 0 ^ A ^ 1; 1 ^ A

z U.

We note that:

(i) lim Gn (A, b, A, B) = Gn (A, b, A, B) (see [13]) q '■

= p E A : 1 + b

(1 A) Dn^z-M + A (D n f (z))

1 + Az ^ 1 + Bz

}

;

(ii)

lim Gn (A, b, 1, 1) = Gn (A, b) (see [14]) q '■

= p E A : R (1 + b [(1 - A)

D f    + A (D n f (z)) 1]) > 0^

;

(iv)

(v)

(vi)

(vii)

G (A, b, A, B)= Gq (A, b, A, B)

= p E A : 1 + b

(1 A) fzz)

G qn (A,b, 1, 1)= G qn (A,b)

D n f (z)

= p E A : R (1 + b (1 A) -q^

G q n (0, 1 a) = G q n (a) = f E A : R

G qn (0, 1

G qn (A, 1

D qn f (z)

z

-

-

G qn λ, e

+  '• f <z) - l] ^ r+A}

+ AD q ( D n f (z) ) - 1] } > 0^

> a, 0 <  a <  p ,

a) = R n (a) = {f E A : R [D q DDff (z)] > a, 0 ^ a < 1} ;

a, 1,1)= G qn (A, a)

= p E A : R (1 - A)

D n f (z)

z

+ ADq ( D n f (z) ) >a},

-

i6 (1 a) cos 9, 1,1 ) = Gn (A, a, 9)

;

;

0 ^ a < 1;

= p E A : R (e i6 [(1 A) Dq^zM + AD q ( D n f (z))] ) > a cos 91,

| 9 | < П, 0 ^ a < 1.

2.    Main Result

To prove our main result we need the following definition and lemmas.

Definition 1 (Subordinating Factor Sequence [15]). A sequence {bk } k=i of complex numbers is said to be a subordinating factor sequence if, whenever f (z) of the form (1.1) is analytic, univalent and convex in U, we have the subordination given by

5 akbk z k ^ f (z), z £ U, a i = 1.

k=1

Lemma 1 [15] . The sequence {bk } k=i is a subordinating factor sequence if and only if

R

{1+2 E b k = k}

> 0,

z U.

Now, we prove the following lemma which gives a sufficient condition for functions to belong to the class Gn (A, b, A, B).

Lemma 2. Let the function f which is defined by (1.1) satisfy the following condition:

E (1 + B ) {1 + A ([k] , - 1)} ([k],)" | a k | < (B - A) | b | ,              (2.1)

k=2

then f £ Gn (A, b, A, B) .

  • <1 Suppose that the inequality (2.1) holds. Then we have for z £ U,

D n f (z)

(1 - A) -qiu + ad , ( Df (z) ) - 1

Г         D n f (z)

B (1 - A) -qiu + ad , ( Df (z) )

- B - (A - B ) b

E{ 1 + A ([k], - 1)}([k],)"ak zk-i k=2

(B - A) b + B £ {1 + A ([k] , - 1) } ([k],) " ak z k- i k =2

< V { 1 + A ( [k] , - 1 )}( [k] , ) " | akHz | k- i k=2

  • - | (B - A) | b | - B £ { 1 + A ( [k] , - 1 ) } ( [k] , ) " | a k | | z | k- i I k=2

< £ (1 + B) {1 + A ([k], - 1)} ([k],)“ |ak| zk-i - (B - A) |b| < 0, k=2

which shows that f (z) belongs to the class Gn (A, b, A, B). >

Let Gn * (A, b, A, B) denote the class of functions f (z) £ A whose coefficients satisfy the condition (2.1). We note that Gn * (A, b, A, B) C Gn (A,b, A, B). Also, let G. (A, b, A, B) = G * (A,b,A,B), * (A,b, - 1,1) = * (A,b), Gn * (A, 1 - a, - 1,1) = Gn * (A, a), Gn * ( A,e -i6 (1 - a) cos 0, - 1,1 ) = Gn * (A,b,0) ( | 0 | п , 0 ^ a < 1 ) .

In this paper we prove several subordination relationships involving the functional class Gn* (A,b, A, B) employing the technique used earlier by Attiya [16] and Srivastava and Attiya [17] (see also [13, 14, 18–22]).

Theorem 1. Let the function f defined by (1.1) be in the class Gn* (A, b, A, B) and g K . Then

У (1 + b ) (1 + Aq) (1 + q) n            / f w f \

(2 [(1 + B)(1 + Aq) (1 + q) n + (B - A) | b | ]) (f * g) (z) ^ g (z)           ( )

(L+BH^+^^i+syn+SB-AiM.

R {f (z)} >          (1+ B)(1 + Aq) (1 + q) n        ’ z e U’           ( )

qq t ne constant factor 2[(1+B)(1+Aq)(1+€i)n+(B A)|b|] in the subordination result (2.2) cannot be replaced by a larger one.

< Let f E Gn* (A, b, A, B ) and let g (z) = z + £ ckzk E K . Then we have k=2

(      (1+B H1+Na+q) n

V2 [(1 + B)(1+ Aq) (1 + q) n + (B - A) \b\]) (J g)( )

-(

(1 + B )(1 + Aq)(1 + q) n

2 [(1 + B)(1+ Aq)(1 + q) n + (B - A) | b | ]

(2.4)

Thus, by Definition 1, the subordination result (2.2) will hold true if the sequence

■ . B ■ . >q ■ . q

(1+ b ) (1+Aq) (1+q) n + (B - A) | b | k) k=i

(2.5)

is a subordinating factor sequence, with a i = 1. In view of Lemma 1, this is equivalent to the following inequality:

^ / 1 + E_____ (1+ B)(1+ Aq)(1 + qT _____o /1 > 0 G U (2 6)

R k= (1 + b)(1 + Aq)(1 + q) n + (b a) \ b l a k zi> 0 zEU’      ( )

Since

ф(к) = |1 + a ([k]q - 1)}([k]q)n , k > 2, 0 ^ A ^ 1, 0

{DC

1+E k=i

(1+ B)(1+ Aq)(1 + q)n

(1 + B )(1 + Aq)(1+ q)n+ (B - A) |b|

akzk

= U i +      (1 + B)(1 + Aq)(1 + q)n      .

1 +(1 + B )(1 + Aq)(1+ q)n+ (B - A) |b|

+

(1 + B) £ (1 + Aq)(1+ q)n k=2

(1+ B)(1+ Aq)(1 + q)n + (B

-

A)|b|kzk}

> 1 -

(1+ B)(1+ Aq)(1 + q)n

>1

(1+ B)(1+ Aq)(1+ q)n + (B - A) |b| r (1 + B )(1 + Aq)(1+ q)n

-

-

(1 + B )(1 + Aq)(1+ q)n + (B - A) |b| r

k£ (1 + B){1 + A ([k]q - 1)}([k]q)n |ak| (1 + B )(1 + Aq)(1+ q)n+ (B - A) |b| r

(B - A) \b|

-

(1+ B)(1+ Aq)(1+ q)n + (B - A) |b| r

= 1 - r > 0,   |z| = r < 1, where we have also made use of assertion (2.1) of Lemma 2. Thus (2.6) holds true in U and also the subordination result (2.2) asserted by Theorem 1. The inequality (2.3) follows from (2.2)

by taking the convex function g (z) = y-z = z + ^k= zk• To prove the

constant by

(1+B)(1+Aq)(1+q)n

2[(1+B)(1+Aq)(1+q)n+(B-A)|b|]

, we consider the function fo (z) Gn*

sharpness of the (A, b, A, B) given

Thus from (2.2), we have

г / \ _              (B A) |b|          2

f0 (z) =z — (T+B)a"+Aqya"+^fz.

(2.7)

(1 + B )(1 + Aq)(1+ q)n

2 [(1 + B)(1 + Aq) (1 + q)n + (B - A) |b|]

f0 (z)^ 1

z

-

, z

z U.

(2.8)

Moreover, it can easily be verified for the function fo (z) given by (2.7) that

min < R f

|z|Cr I V

(1+ B)(1+ Aq)(1 + q)n

2 [(1 + B) (1 + Aq) (1 + q)n+ (BA) |b|]

fo (z))}=- 2

.

(2.9)

This shows that the constant the proof of Theorem 1. >

(1+B)(1+Aq)(1+q)n

2[(1+B)(1+Aq)(1+q)n+(B-A)|b|]

is the best possible, this completes

Putting n = 0 in Theorem 1, we have

Corollary 1. Let the function f defined by (1.1) be in the class G* (A, b, A, B) and gK. Then

/        (1 + B )(1 + Aq)        A _             .

(2[(1+ B)(1+ Aq) + (B - A) |b|]J (f* g)(z)^ g (z) ’ z U’

(2.10)

and

- (1 + B)(1 + Aq) + (B — A) |b|

R{f (z)} >        (1+ B)(1+ Aq)

.

(2.11)

The constant factor 2[(1+B)(1+Ay)+(B A)|b|] in the subordination result (2.10) cannot be rep laced by a larger one.

Putting A = -1 and B = 1 in Theorem 1, we have

Corollary 2. Let the function f defined by (1.1) be in the class Gqn* (A, b) and g K.

Then

/    (1 + Aq) (1 + q)

V 2 [(1 + Aq)(1 + q)n

n

+ |b|]

) (f* g)(z)^ g(z), z U

(2.12)

and

R{f (z)} >

-

(1 + AqlO + 9r±Ibl

(1 + Aq)(1+ q)n’ z U

(2.13)

The constant factor by a larger one.

(1+Aq)(1+q)n

2[(1+Aq)(1+q)n+|b|]

in the subordination result (2.12) cannot be replaced

Putting b = 1 a(0 C a < 1), A = 1 and B = 1 in Theorem 1, we have

Corollary 3. Let the function f defined by (1.1) be in the class Gn* (A, a) (0 C a < 1) and g K . Then

n

/      (1 + Aq) (1 + q)

\2 [(1 + Aq) (1 + q)n + 1

-

—г) (f * g)(z) ^ g(z), z € U aU

(2.14)

and

тг/мт. (1 + Xq) (1 + q)n + 1 a c

R{f (z)} >       (1+ Aq)(1 +q)n    , z E U               (2.15)

(1+^q)(1+q)n

in the subordination result (2.14) cannot be replaced

The constant factor 2[(1+Aq)(1+q)n+1-a] by a larger one.

Putting b = e i6 (1 a) cos 6 (|6| П; 0 C a < 1) , A = 1 and B = 1 in Theorem 1, we have

Corollary 4. Let the function f defined by (1.1) be in the class Gn* (X-a-G} (|6| < П; 0 C a < 1) and g E K. Then

n

2 .. ,: +.     T.    .       )*»)(z)"»«- zEU-       (2Л6)

and

R f «} > (1±X7r++f^- ZE U.       (2.17)

C^+^q^C^+q)

The constant factor 2[(1+Aq)(1+q)n+(1-a) cos6] replaced by a larger one.

in the subordination result (2.14) cannot be

Remark 1. Taking A = — 1, B = 1 and letting q ^ 1 in Theorem 1, we get the result obtained by Aouf [14, Theorem 1].

Remark 2. Replacing A by A, B by —B and letting q ^ 1 in Theorem 1, we obtain the result get by Sivasubramanian et al. [13, Theorem 2.2].

Remark 3. Putting n = Х = 0, b = 1 а (0 C а < 1) and letting q ^ 1- in Corollary 2, we get the result obtained by Aouf [14, Corollary 3].

Remark 4. Putting n = 0, Х = 1, b = 1a (0 C а < 1) and letting q ^ 1- in Corollary 2, we get the result obtained by Aouf [14, Corollary 4].

Список литературы Some subordination results for certain class with complex order defined by Salagean type q-difference operator

  • Blboaca, T. Differential Subordinations and Superordinations, New Results, Cluj-Napoca, House of Scientific Boook Publ., 2005.
  • Miller, S. S. and Mocanu, P. T. Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., no. 255, New York, Marcel Dekker Inc., 2000, 480 p. DOI: 10.1201/9781482289817
  • Annaby, M. H. and Mansour, Z. S. q-Fractional Calculus and Equations, Lecture Notes in Mathematics, vol. 2056, Berlin, Springer-Verlag, 2012. DOI: 10.1007/978-3-642-30898-7
  • Aouf, M. K. and Seoudy, T. M. Convolution Properties for Classes of Bounded Analytic Functions with Complex Order Defined by q -Derivative Operator, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2019, vol. 113, no. 2, pp. 1279-1288. DOI: 10.1007/s13398-018-0545-5
  • Aral, A., Gupta, V. and Agarwal, R. P. Applications of q -Calculus in Operator Theory, New York, Springer, 2013. DOI: 10.1007/978-1-4614-6946-9
  • Gasper, G. and Rahman, M. Basic Hypergeometric Series, Cambridge, Cambridge University Press, 1990, xx+287 p.
  • Jackson, F. H. On q -Functions and a Certain Difference Operator, Transactions of the Royal Society of Edinburgh, 1908, vol. 46, pp. 253-281.
  • DOI: 10.1017/S0080456800002751
  • Seoudy, T. M. and Aouf, M. K. Convolution Properties for Certain Classes of Analytic Functions Defined by q -Derivative Operator, Abstract and Applied Analysis, vol. 2014, art. ID 846719, pp. 1-7.
  • DOI: 10.1155/2014/846719
  • Seoudy, T. M. and Aouf, M. K. Coefficient Estimates of New Classes of q -Starlike and q -Convex Functions of Complex Order, Journal of Mathematical Inequalities, 2016, vol. 10, no. 1, pp. 135-145.
  • DOI: 10.7153/jmi-10-11
  • Govindaraj, M. and Sivasubramanian, S. On a Class of Analytic Functions Related to Conic Domains Involving q -Calculus, Analysis Mathematica, 2017, vol. 43, no. 3, pp. 475-487.
  • DOI: 10.1007/s10476-017-0206-5
  • Salagean, G. S. Subclasses of Univalent Functions, Lecture Notes in Mathematics, vol. 1013, Berlin, Springer-Verlag, 1983, pp. 362-372.
  • DOI: 10.1007/BFb0066543
  • Aouf, M. K. and Srivastava, H. M. Some Families of Starlike Functions with Negative Coefficients, Journal of Mathematical Analysis and Applications, 1996, vol. 203, no. 3, pp. 762-790.
  • DOI: 10.1006/jmaa.1996.0411
  • Sivasubramanian, S., Mohammed, A. and Darus, M. Certain Subordination Properties for Subclasses of Analytic Functions Involving Complex Order, Abstract and Applied Analysis, vol. 2011, art. ID 375897, pp. 1-8.
  • DOI: 10.1155/2011/375897
  • Aouf, M. K. Subordination Properties for a Certain Class of Analytic Functions Defined by the Salagean Operator, Applied Mathematics Letters, 2009, vol. 22, no. 10, pp. 1581-1585.
  • DOI: 10.1016/j.aml.2009.05.005
  • Wilf, H. S. Subordinating Factor Sequence for Convex Maps of the Unit Circle, Proceedings of the American Mathematical Society, 1961, vol. 12, pp. 689-693.
  • DOI: 10.1090/S0002-9939-1961-0125214-5
  • Attiya, A. A. On Some Application of a Subordination Theorems, Journal of Mathematical Analysis and Applications, 2005, vol. 311, no. 2, pp. 489-494.
  • DOI: 10.1016/j.jmaa.2005.02.056
  • Srivastava, H. M. and Attiya, A. A. Some Subordination Results Associated with Certain Subclass of Analytic Functions, Journal of Inequalities in Pure and Applied Mathematics, 2004, vol. 5, no. 4, pp. 1-6.
  • Aouf, M. K. and Mostafa, A. O. Some Subordination Results for Classes of Analytic Functions Defined by the Al-Oboudi-Al-Amoudi, Archiv der Mathematik, 2009, vol. 92, pp. 279-286.
  • DOI: 10.1007/s00013-009-2984-x
  • Aouf, M. K., Shamandy, A. A., Mostafa, O. and El-Emam, F. Subordination Results Associated with β -Uniformly Convex and Starlike Functions, Proceedings of the Pakistan Academy of Sciences, 2009, vol. 46, no. 2, pp. 97-101.
  • Aouf, M. K., Shamandy, A., Mostafa, A. O. and Adwan, E. A. Subordination Results for Certain Class of Analytic Functions Defined by Convolution, Rendiconti del Circolo Matematico di Palermo, 2011, vol. 60, pp. 255-262.
  • DOI: 10.1007/s12215-011-0048-0
  • Aouf, M. K. Shamandy, A. Mostafa, A. O. and Adwan, E. A. Subordination Theorem for Analytic Functions Defined by Convolution, Complex Analysis and Operator Theory, 2013, vol. 7, pp. 1117-1126.
  • DOI: 10.1007/s11785-011-0171-0
  • Bulut, S. and Aouf, M. K. Subordination Properties for a Certain Class of Analytic Functions with Complex Order, Le Matematiche, 2014, vol. 69, no. 2, pp. 117-128.
Еще
Статья научная