Современные методы оценки эпикардиальной жировой ткани

Автор: Т.Н. Василькова, Т.А. Мищенко

Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk

Рубрика: Обзоры и лекции

Статья в выпуске: 1 т.38, 2023 года.

Бесплатный доступ

Эпикардиальная жировая ткань (ЭЖТ) представляет собой депо висцерального жира сердца, обладающее высокой пластичностью и непосредственно контактирующее с миокардом и коронарными артериями. Эпикардиальный жир (ЭЖ) является уникальным паракринным органом, тесно анатомически и физиологически связанным с миокардом. Исследования последних лет неоднократно подтвердили роль ЭЖ в прогрессировании заболеваний сердечно-сосудистой системы. Его накопление, измеренное с помощью новых неинвазивных методов визуализации, проспективно связано с началом и прогрессированием ишемической болезни сердца (ИБС) и фибрилляции предсердий. Настоящий обзор посвящен современным методам in vivo оценки ЭЖ.

Еще

Ожирение, эпикардиальная жировая ткань, метаболический синдром

Короткий адрес: https://sciup.org/149141580

IDR: 149141580   |   DOI: 10.29001/2073-8552-2023-38-1-46-57

Список литературы Современные методы оценки эпикардиальной жировой ткани

  • Lavie C.J., Milani R.V., Ventura H.O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009;53(21):1925–1932. DOI: 10.1016/j. jacc.2008.12.068.
  • Iacobellis G., Bianco A.C. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 2011;22(11):450–457. DOI: 10.1016/j.tem.2011.07.003.
  • Rabkin S.W. Epicardial fat: Properties, function and relationship to obesity. Obes. Rev. 2007;8(3):253–261. DOI: 10.1111/j.1467-789X.2006.00293.x.
  • Iacobellis G., Corradi D., Sharma A.M. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005;2:536–543. DOI: 10.1038/ncpcardio0319.
  • Doukbi E., Soghomonian A., Sengenès C., Ahmed S., Ancel P., Dutour A. et al. Browning epicardial adipose tissue: friend or foe? Cells. 2022;11(6):991. DOI: 10.3390/cells11060991.
  • Vural B., Atalar F., Ciftci C., Demirkan A., Susleyici-Duman B., Gunay D. et al. Presence of fatty-acid-binding protein 4 expression in human epicardial adipose tissue in metabolic syndrome. Cardiovasc. Pathol. 2008;17(6):392–398. DOI: 10.1016/j.carpath.2008.02.006.
  • Sacks H.S., Fain J.N., Holman B., Cheema P., Chary A., Parks F. et al. Uncoupling protein-1 and related mRNAs in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 2009;94:3611–3615. DOI: 10.1210/jc.2009-0571.
  • Sacks H.S., Fain J.N., Bahouth S.W., Ojha S., Frontini A., Budge H. et al. Adult epicardial fat exhibits beige features. J. Clin. Endocrinol. Metab. 2013;98(9):E1448–E1455. DOI: 10.1210/jc.2013-1265.
  • Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 2022;19(9):593–606. DOI: 10.1038/s41569-022-00679-9.
  • Butcovan D., Mocanu V., Timofte D.V., Costan V.V., Danila R., Veselin A.P. et al. Macrophage accumulation and angiogenesis in epicardial adipose tissue in cardiac patients with or without chronic heart failure. Appl. Sci. 2020;10:5871. DOI: 10.3390/app10175871.
  • Gaborit B., Sengenes C., Ancel P., Jacquier A., Dutour A. Role of epicardial adipose tissue in health and disease: a matter of fat? Compr. Physiol. 2017;7:1051–1082. DOI: 10.1002/cphy.c160034.
  • Shaihov-Teper O., Ram E., Ballan N., Brzezinski R.Y., Naftali-Shani N., Masoud R. et al. Extracellular vesicles from epicardial fat facilitate atrial fi brillation. Circulation 2021;143:2475–2493. DOI: 10.1161/CIRCULATIONAHA.120.052009.
  • Cherian S., Lopaschuk G.D., Carvalho E. Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. Am. J. Physiol.-Endocrinol. Metab. 2012;303:E937–E949. DOI: 10.1152/ajpendo.00061.2012.
  • Gaborit B., Abdesselam I., Dutour A. Epicardial Fat: More than Just an “Epi” Phenomenon? Horm. Metab. Res. 2013;45(13):991–1001. DOI: 10/1055/s-0033-1358669.
  • Flüchter S., Haghi D., Dinter D., Heberlein W., Kühl H.P., Neff W. et al. Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity (Silver Spring). 2007;15(4):870–878. DOI: 10.1038/oby.2007.591.
  • Granér M., Siren R., Nyman K., Lundbom J., Hakkarainen A., Pentikäinen M.O. et al. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J. Clin. Endocrinol. Metab. 2013;98(3):1189–1197. DOI: 10.1210/jc.2012-3190.
  • Iacobellis G., Pond C.M., Sharma A.M. Diff erent “weight” of cardiac and general adiposity in predicting left ventricle morphology. Obesity. 2006;14(10):1679–1684. DOI: 10.1038/oby.2006.192.
  • Кузнецова Т.Ю., Чумакова Г.А., Дружилов М.А., Веселовская Н.Г. Роль количественной эхокардиографической оценки эпикардиальной жировой ткани у пациентов с ожирением в клинической практике. Российский кардиологический журнал. 2017;(4):81–87. [Kuznetsova T.Y., Chumakova G.A., Druzhilov M.A., Veselovskaya N.G. Clinical application of quantitative echocardiographic assessment of epicardial fat tissue in obesity. Russian Journal of Cardiology. 2017;(4):81–87. (In Russ .)]. DOI: 10.15829/1560-4071-2017-4-81-87.
  • Chu C.Y., Lee W.H., Hsu P.C., Lee M.K., Lee H.H., Chiu C.A. et al. Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fi brillation. Medicine (Baltimore). 2016;95(11):E2874. DOI: 10.1097/MD.0000000000002874.
  • Pierdomenico S.D., Pierdomenico A.M., Cuccurullo F., Iacobellis G., Meta- analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am. J. Cardiol. 2013;111:73–78. DOI: 10.1016/j.amjcard.2012.08.044.
  • Villasante Fricke A.C., Iacobellis G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int. J. Mol. Sci. 20 19;20(23):5989. DOI: 10.3390/ijms20235989.
  • Crendal E., Dutheil F., Naughton G., McDonald T., Obert P. Increased myocardial dysfunction, dyssynchrony, and epicardial fat across the lifespan in healthy males. BMC Cardiovasc. Disord. 2014;14:95. DOI: 10.1186/1471-2261-14-95.
  • Spearman J.V., Renker M., Schoepf U.J., Krazinski A.W., Herbert T.L., De Cecco C.N. et al. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur. Radiol. 2015;25(11):3372–81. DOI: 10.1007/s00330-015-3765-5.
  • Oikonomou E.K., Siddique M., Antoniades C. Artifi cial intelligence in medical imaging: a radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc. Res. 2020;116:2040–2054. DOI: 10.1093/cvr/cvaa021.
  • Попов Е. В., Анашбаев Ж.Ж., Мальцева А. Н., Сазонова С. И. Радиомические характеристики текстурных изменений эпикардиальной жировой ткани при атеросклеротическом поражении коронарных артерий. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(4):6–16. [Popov E.V., Anashbaev Z.Z., Maltseva A.N., Sazonova S.I. Radiomic features of epicardial adipose tissue in coronary atherosclerosis. Complex Issues of Cardiovascular Diseases. 2021;10(4):6–16. (In Russ.)] DOI: 10.17802/2306–1278-2021-10-4-6-16.
  • Ilyushenkova J., Sazonova S., Popov E., Zavadovsky K., Batalov R., Archakov E. et al. Radiomic phenotype of epicardial adipose tissue in the prognosis of atrial fi brillation recurrence after catheter ablation in patients with lone atrial fi brillation. J. Arrhythm. 2022;38(5):682–693. DOI: 10.1002/joa3.12760.
  • Iacobellis G., Mahabadi A.A. Is epicardial fat attenuation a novel marker of coronary infl ammation? Atherosclerosis. 2019;284:212–213. DOI: 10.1016/j.atherosclerosis.2019.02.023.
  • Iacobellis G., Secchi F., Capitanio G., Basilico S., Schiaffi no S., Boveri S. et al. Epicardial fat infl ammation in severe COVID-19. Obesity (Silver Spring). 2020;28(12):2260–2262. DOI: 10.1002/oby.23019.
  • Wang Q., Chi J., Wang C., Yang Y., Tian R., Chen X. Epicardial adipose tissue in patients with coronary artery disease: a meta-analysis. J. Cardiovasc. Dev. Dis. 2022;9(8):253. DOI: 10.3390/jcdd9080253.
  • Mahabadi A.A., Berg M.H., Lehmann N., Kälsch H., Bauer M., Kara K. et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J. Am. Coll. Cardiol. 2013;61(13):1388–1395. DOI: 10.1016/j.jacc.2012.11.062.
  • Ding J., Hsu F.C., Harris T.B., Liu Y., Kritchevsky S.B., Szklo M. et al. The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2009;90(3):499–504. DOI: 10.3945/ajcn.2008.27358.
  • Maimaituxun G., Shimabukuro M., Fukuda D., Yagi S., Hirata Y., Iwase T. et al. Local thickness of epicardial adipose tissue surrounding the left anterior descending artery is a simple predictor of coronary artery disease- new prediction model in combination with Framingham risk score. Circ. J. 2018;82(5):1369–1378. DOI: 10.1253/circj.CJ-17-1289.
  • Kotanidis C.P., Antoniades C. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br. J. Pharmacol. 2021;178:4270–4290. DOI: 10.1111/bph.15634.
  • Oikonomou E.K., Marwan M., Desai M.Y., Mancio J., Alashi A., Hutt Centeno E. et al. Non-invasive detection of coronary infl ammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT Study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151);929–939. DOI: 10.1016/S0140-6736(18)31114-0.
  • Gorter P.M., de Vos A.M., van der Graaf Y., Stella P.R., Doevendans P.A., Meijs M.F. et al. Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am. J. Cardiol. 2008;102(4):380–385. DOI: 10.1016/j.amjcard.2008.04.002.
  • Брель Н.К., Груздева О.В., Коков А.Н., Масенко В.Л., Белик Е.В., Дылева Ю.А. и др. Взаимосвязь кальциноза коронарных артерий и локальных жировых депо у пациентов с ишемической болезнью сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(3):51–63. [Brel N.K., Gruzdeva O.V., Kokov A.N., Masenko V.L., Belik E.V., Dyleva U.A. et al. Relationship of coronary calcinosis and local fat deposts in patients with coronary artery disease. Complex Issues of Cardiovascular Diseases. 2022;11(3):51–63. (In Russ.)]. DOI: 10.17802/2306-1278-2022-11-3-51-63.
  • Djaberi R., Schuijf J.D., van Werkhoven J.M., Nucifora G., Jukema J.W., Bax J.J. Relation of epicardial adipose tissue to coronary atherosclerosis. Am. J. Cardiol. 2008;102(12):1602–1607. DOI: 10.1016/j.amjcard.2008.08.010.
  • Błachnio-Zabielska A.U., Baranowski M., Hirnle T., Zabielski P., Lewczuk A., Dmitruk I. et al. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance. Lipids. 2012;47(12):1131–1141. DOI: 10.1007/s11745-012-3722-x.
  • Yang J., Zhang H., Parhat K., Xu H., Li M., Wang X. et al. Molecular imaging of brown adipose tissue mass. Int. J. Mol. Sci. 2021;22(17):9436. DOI: 10.3390/ijms22179436.
  • Бугрий М. Е., Сергиенко И. В. Сергиенко В. Б. Взаимосвязь структуры и секреторной функции жировой ткани с развитием атеросклероза по данным позитронно-эмиссионной томографии. Обзор литературы. Атеросклероз и дислипидемии. 2020;4(41):12–19. [Bugriy M. E., Sergienko I. V. Sergienko V. B. Relationship between the structure and secretory function of adipose tissue and the development of atherosclerosis according to positron emission tomography. Literature review. Atherosclerosis and dyslipidemia. 2020;4(41):12–19. (In Russ.)]. DOI: 10.34687/2219-8202.JAD.2020.04.0002.
  • Chen K.Y., Cypess A.M., Laughlin M.R., Haft C.R., Hu H.H., Bredella M.A. et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24(2):210–222. DOI: 10.1016/j.cmet.2016.07.014.
  • Yang J., Zhang H., Parhat K., Xu H., Li M., Wang X. et al. Molecular imaging of brown adipose tissue mass. Int. J. Mol. Sci. 2021;22(17):9436. DOI: 10.3390/ijms22179436.
  • Fraum T.J., Crandall J.P., Ludwig D.R., Chen S., Fowler K.J., Laforest R.A. et al. Repeatability of quantitative brown adipose tissue imaging metrics on positron emission tomography with 18F-fluorodeoxyglucose in humans. Cell Metab. 2019;30(1):212–224.e4. DOI: 10.1016/j.cmet.2019.05.019.
  • Labbé S.M., Caron A., Bakan I., Laplante M., Carpentier A.C., Lecomte R. et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 2015;29:2046–2058. DOI: 10.1096/fj.14-266247.
  • Richard M.A., Blondin D.P., Noll C., Lebel R., Lepage M., Carpentier A.C. Determination of a pharmacokinetic model for [11C]-acetate in brown adipose tissue. EJNMMI Res. 2019;9(1):31. DOI: 10.1186/s13550-019-0497-6.
  • U Din M., Raiko J., Saari T., Kudomi N., Tolvanen T., Oikonen V. et al. Human brown adipose tissue [(15)O]O2 PET imaging in the presence and absence of cold stimulus. Eur. J. Nucl. Med. Mol. Imaging. 2016;43(10):1878–1886. DOI: 10.1007/s00259-016-3364-y.
  • Madar I., Naor E., Holt D., Ravert H., Dannals R., Wahl R. Brown adipose tissue response dynamics: in vivo insights with the voltage sensor 18F-fluorobenzyl triphenyl phosphonium. PLoS One. 2015;10(6):1–13. DOI: 10.1371/journal.pone.0129627.
  • Yang J., Yang J., Wang L., Moore A., Liang S.H., Ran C. Synthesis-free PET imaging of brown adipose tissue and TSPO via combination of disulfiram and 64CuCl2. Sci. Rep. 2017;7(1):8298. DOI: 10.1038/s41598-017-09018-2.
  • Chen Y.C., Cypess A.M., Chen Y.C., Palmer M., Kolodny G., Kahn C.R. et al. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J. Nucl. Med. 2013;54(9):1584–1587. DOI: 10.2967/jnumed.112.117275.
  • Yaligar J., Verma S.K., Gopalan V., Anantharaj R., Thu Le G.T., Kaur K. et al. Dynamic contrast-enhanced MRI of brown and beige adipose tissues. Magn. Reson. Med. 2020;84(1):384–395. DOI: 10.1002/mrm.28118.
  • Wu M., Junker D., Branca R.T., Karampinos D.C. Magnetic resonance imaging techniques for brown adipose tissue detection. Front. Endocrinol. (Lausanne). 2020;11:421. DOI: 10.3389/fendo.2020.00421.
  • Chondronikola M., Beeman S.C., Wahl R.L. Non-invasive methods for the assessment of brown adipose tissue in humans. J. Physiol. 2018;596(3):363–378. DOI: 10.1113/JP274255.
  • Hamaoka T., Nirengi S., Fuse S., Amagasa S., Kime R., Kuroiwa M. et al. Near-infrared time-resolved spectroscopy for assessing brown adipose tissue density in humans: a review. Front. Endocrinol. (Lausanne). 2020;11:261. DOI: 10.3389/fendo.2020.00261.
  • Fuse S., Nirengi S., Amagasa S., Homma T., Kime R., Endo T. et al. Brown adipose tissue density measured by near-infrared time-resolved spectroscopy in Japanese, across a wide age range. J. Biomed. Opt. 2018;23(6):1–9. DOI: 10.1117/1.JBO.23.6.065002.
  • Kolonin M.G., Sun J., Do K.A., Vidal C.I., Ji Y., Baggerly K.A. et al. Synchronous selection of homing peptides for multiple tissues by in vivo phage display. FASEB J. 2006;20(7):979–981. DOI: 10.1096/fj.05-5186fje.
  • Zhang X., Tian Y., Zhang H., Kavishwar A., Lynes M., Brownell A.-L. et al. Curcumin analogues as selective fluorescence imaging probes for brown adipose tissue and monitoring browning. Sci. Rep. 2015;5:13116. DOI: 10.1038/srep13116.
  • Zhang X., Kuo C., Moore A., Ran C. In vivo optical imaging of interscapular brown adipose tissue with 18F-FDG via Cerenkov luminescence imaging. PLoS One. 2013;8(4):e62007. DOI: 10.1371/journal.pone.0062007.
  • Li W., Ma J., Jiang Q., Zhang T., Qi Q., Cheng Y. Fast noninvasive measurement of brown adipose tissue in living mice by near-infrared fluore - cence and photoacoustic imaging. Anal. Chem. 2020;92(5):3787–3794. DOI: 10.1021/acs.analchem.9b05162.
  • Henkin A.H., Cohen A.S., Dubikovskaya E.A., Park H.M., Nikitin G.F., Auzias M.G. et al. Real-time noninvasive imaging of fatty acid uptake in vivo. ACS Chem. Biol. 2012;7(11):1884–1891. DOI: 10.1021/cb300194b.
  • Clerte M., Baron D.M., Brouckaert P., Ernande L., Raher M.J., Flynn A.W. et al. Brown adipose tissue blood flow and mass in obesity: a contrast ultrasound study in mice. J. Am. Soc. Echocardiogr. 2013;26(12):1465–1473. DOI: 10.1016/j.echo.2013.07.015.
Еще
Статья научная