Special aspects of the cardiovascular system regulation and cerebral blood flow under gravitational influences. Review (part I)

Автор: Bersenev E.Yu., Demina P.N., Demidenko S.E., Berseneva I.A., Kaspransky R.R.

Журнал: Cardiometry @cardiometry

Рубрика: Original research

Статья в выпуске: 30, 2024 года.

Бесплатный доступ

The review outlines modern aspects of studying some car-diometric characteristics, the changes of which are asso-ciated with ensuring adaptation of central, peripheral he-modynamics, and cerebral blood flow under conditions of an altered gravity vector in the state of weightlessness and its ground-based modeling. The results of studies reflect-ing the characteristic role of the cardiovascular system and its components are presented: autoregulation of cerebral blood flow, reconfiguration of the regulatory mechanisms of the circulatory system, and starting from the features of myocardial remodeling to changes in large vascular beds. The features of the restructuring of central and peripher-al blood flow, microcirculation, as well as manifestations of changes in the reflex regulation of the functions of the car-diorespiratory system in response to gravitational influenc-es, are considered.

Еще

Weightlessness, microgravity simulation, gravitational stress, cerebral blood flow, cerebral autoregulation, cardiovascular, reflexes, cardiovascular system

Короткий адрес: https://sciup.org/148328266

IDR: 148328266   |   DOI: 10.18137/cardiometry.2024.30.1626

Список литературы Special aspects of the cardiovascular system regulation and cerebral blood flow under gravitational influences. Review (part I)

  • The Evolving Landscape of 21st Century American Spaceflight. Available online: https://www.nasa.gov/sites/default/files/files/Emerging_Space_Report.pdf (accessed on 2 November 2022).
  • Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, 6436.
  • Little MP, Tawn EJ, Tzoulaki I, et al. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. Radiat. Environ. Biophys. 2010, 49, 139–153.
  • Krittanawong C, Singh NK, Scheuring RA, et al. Human Health during Space Travel: State-of-the-Art Review. Cells 2023, 12, 40. https://doi.org/10.3390/cells12010040
  • Kanas N. Psychiatric issues affecting long duration space missions. Aviat. Space Environ. Med. 1998, 69, 1211–1216.
  • Arone A, Ivaldi T, Loganovsky T, et al. The Burden of Space Exploration on the Mental Health of Astronauts: A Narrative Review. Clin. Neuropsychiatry 2021, 18, 237–246.
  • Buoite SA, Ajčević M, Furlanis G, et al. Neurophysiological adaptations to spaceflight and simulated microgravity. ClinNeurophysiol. 2021 Feb;132(2):498-504. doi: 10.1016/j.clinph.2020.11.033. Epub 2020 Dec 24. PMID: 33450569.
  • Jennings RT. (1998). Managing Space Motion Sickness. Journal of Vestibular Research, 8(1), 67–70. doi:10.3233/ves-1998-8110
  • Lathers CM, Charles JB. Comparison of cardiovascular function during the early hours of bed rest and space flight. J ClinPharmacol. 1994 May;34(5):489-99. doi: 10.1002/j.1552-4604. 1994.tb04992. x. PMID: 8089261.
  • Blomqvist CG, Stone HL. Cardiovascular adjustments to gravitational stress. In: Shepard JT, Abboud FM, eds. Handbook of Physiology: The Cardiovascular System Peripheral Circulation and Organ Blood Flow. Oxford University Press Inc, Vol. 3. 1983. p. 1025.
  • Hinghofer-Szalkay H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur J ApplPhysiol 2011; 111:163–174.
  • Lipták B., Venczel K. Measurement and Safety: Volume I, B and 1. Routledge Handbooks, 2016, CRC Press.
  • Truijen J, Bundgaard-Nielsen M, van Lieshout JJ. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress. Eur J ApplPhysiol. 2010 May; 109(2):141-57. doi: 10.1007/s00421-009-1346-5. Epub 2010 Jan 7. PMID: 20052592; PMCID: PMC2861179.
  • Mosqueda-Garcia R, Furlan R, Tank J, et al. The elusive pathophysiology of neurally mediated syncope. Circulation 2000; 102:2898–2906.
  • Vallbo AB, Hagbarth KE, Wallin BG. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J ApplPhysiol (1985). 2004 Apr; 96(4):1262-9. doi: 10.1152/japplphysiol.00470.2003. PMID: 15016790.
  • Kotovskaya AR, Fomina GA, Features of adaptation and maladaptation of the human cardiovascular system under space flight conditions. Human Physiology, 2010, vol. 36, no 2, pp. 78-86
  • Zhu H. Effects of real and simulated weightlessness on the cardiac and peripheral vascular functions of humans: a review / H. Zhu, H. Wang, Z. Liu // International journal of occupational medicine and environmental health. 2015. Vol. 28(5). P. 793-802.
  • Biaggioni I. All orthostatic hypotension is neurogenic. Clin Auton Res. 2023 Aug;33(4):383-386. doi: 10.1007/s10286-023-00966-6. Epub 2023 Jul 19. PMID: 37468794.
  • Joseph A, Wanono R, Flamant M, et al. Orthostatic hypotension: A review. Nephrol Ther. 2017 Apr;13 Suppl 1: S55-S67. doi: 10.1016/j.nephro.2017.01.003. PMID: 28577744.
  • Stauss HM. Baroreceptor reflex function. Am J PhysiolRegulIntegr Comp Physiol 2002;283.
  • Skytioti M, Søvik S, Elstad M. Respiratory pump maintains cardiac stroke volume during hypovolemia in young, healthy volunteers. J ApplPhysiol 2018; 124:1319–1325.
  • Petersen LG, Ogoh S. Gravity, intracranial pressure, and cerebral autoregulation. Physiol Rep 2019;7: e14039.
  • Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions. ActaPhysiol (Oxf). 2020 Mar; 228(3):e13434. doi: 10.1111/apha.13434. Epub 2020 Jan 13. PMID: 31872965.
  • Parin V.V., Space cardiology, ed. Parina V.V., L: Medicine, 1967, p.206
  • Novikov BC, Soroko SI, Shustov EB. Maladaptive states of a person and their correction under extreme influences, St. Petersburg: Politekhnikaprint, 2018, pp. 5-11.
  • Verheyden B, Liu J, Beckers F, Aubert AE. Operational point of neural cardiovascular regulation in humans up to 6 months in space. J ApplPhysiol (1985). 2010 Mar; 108(3):646-54. doi: 10.1152/japplphysiol. 00883.2009. Epub 2010 Jan 14. PMID: 20075261.
  • Heer M & Paloski WH. (2006). Space motion sickness: Incidence, etiology, and countermeasures. Autonomic Neuroscience, 129(1-2), 77–79. doi:10.1016/j.autneu.2006.07.014
  • Kirsch KA, Röcker L, Gauer OH, et al. Venous pressure in man during weightlessness. Science 1984; 225:218–219.
  • Buckey JC Jr, Gaffney FA, Lane LD, et al. Central venous pressure in space. J ApplPhysiol (1985). 1996 Jul; 81(1):19-25. doi: 10.1152/jappl.1996.81.1.19. PMID: 8828643.
  • Kvetnansky R, Noskov VB, Blazicek P, et al. Activity of the sympathoadrenal system in cosmonauts during 25-day space flight on station Mir. Acta Astronaut. 1991; 23:109-16. doi: 10.1016/0094-5765(91)90106-f. PMID: 11537111.
  • Norsk P, Drummer C, Röcker L, et al. Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J ApplPhysiol (1985). 1995 Jun; 78(6):2253-9. doi: 10.1152/jappl.1995.78.6.2253. PMID: 7665426.
  • Ertl AC, Diedrich A, Biaggioni I, et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol. 2002 Jan 1; 538(Pt 1):321-9. doi: 10.1113/jphysiol.2001.012576. PMID: 11773339; PMCID: PMC2290013.
  • Christensen NJ, Heer M, Ivanova K, Norsk P. Sympathetic nervous activity decreases during head-down bed rest but not during microgravity. J ApplPhysiol (1985). 2005 Oct; 99(4):1552-7. doi: 10.1152/ japplphysiol.00017.2005. Epub 2005 Jun 16. PMID: 15961614.
  • Norsk P, Christensen NJ. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. RespirPhysiolNeurobiol. 2009 Oct; 169 Suppl 1: S26-9. doi: 10.1016/j.resp.2009.07.020. Epub 2009 Aug 3. PMID: 19651245.
  • Prisk GK, Guy HJ, Elliott AR, Deutschman RA 3rd, West JB. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J ApplPhysiol (1985). 1993 Jul; 75(1):15-26. doi: 10.1152/jappl.1993.75.1.15. PMID: 8376261.
  • Verbanck S, Larsson H, Linnarsson D, et al. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J ApplPhysiol (1985). 1997 Sep; 83(3):810-6. doi: 10.1152/jappl.1997.83.3.810. PMID: 9292467.
  • Norsk P, Damgaard M, Petersen L, et al. Vasorelaxation in space. Hypertension. 2006 Jan; 47(1):69-73. doi: 10.1161/01.HYP.0000194332.98674.57. Epub 2005 Nov 21. PMID: 16301338.
  • Foldager N, Andersen TA, Jessen FB, et al. Central venous pressure in humans during microgravity. J ApplPhysiol (1985). 1996 Jul; 81(1):408-12. doi: 10.1152/jappl.1996.81.1.408. PMID: 8828692
  • Estenne M, Gorini M, Van Muylem A, et al. Rib cage shape and motion in microgravity. J ApplPhysiol 1992; 73:946–954.
  • West JB, Prisk GK. Chest volume and shape and intrapleural pressure in microgravity. J ApplPhysiol (1985). 1999 Sep;87(3):1240-1. doi: 10.1152/jappl. 1999.87.3.1240. PMID: 10523144.
  • White RJ, Blomqvist CG. Central venous pressure and cardiac function during spaceflight. J ApplPhysiol (1985). 1998 Aug; 85(2):738-46. doi: 10.1152/jappl.1998.85.2.738. PMID: 9688754.
  • Koenig SC, Convertino VA, Fanton JW, et al. Evidence for increased cardiac compliance during exposure to simulated microgravity. Am J Physiol. 1998 Oct; 275(4 Pt 2): R1343-52. doi: 10.1152/ajpregu.1998.275.4. r1343. PMID: 9756567.
  • Convertino VA. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data. J Gravit Physiol. 1998 Jul; 5(1): P85-8. PMID: 11542376.
  • Torrent-Guasp F, Kocica MJ, Corno AF, et al. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg. 2005 Feb; 27(2):191-201. doi: 10.1016/j.ejcts.2004.11.026. PMID: 15691670.
  • Arbeille P, Fomina G, Roumy J, et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J ApplPhysiol. 2001 Dec; 86(2): 157-68. doi: 10.1007/s004210100473. PMID: 11822475.
  • May C., Borowski A., Martin D., et al. Affect of microgravity on cardiac shape: Comparison of preand in-flight data to mathematical modeling. J. Am. Coll. Cardiol. 2014; 63: A1096. doi: 10.1016/S0735-1097(14)61096-2.
  • Summers R.L., Martin D.S., Meck J.V., Coleman T.G. Mechanism of Spaceflight-Induced Changes in Left Ventricular Mass. Am. J. Cardiol. 2005; 95:1128–1130. doi: 10.1016/j.amjcard.2005.01.033.
  • Sheriff DD, Zhou XP, Scher AM, Rowell LB. Dependence of cardiac filling pressure on cardiac output during rest and dynamic exercise in dogs. Am J Physiol 1993; 265:H316–H322.
  • Ogoh S, Hirasawa A, Raven PB, et al. Effect of an acute increase in central blood volume on cerebral hemodynamics. Am J PhysiolRegulIntegr Comp Physiol 2015; 309: R902–R911.
  • Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart CirculPhysiol 2011; 301:H629–H633.
  • Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. JPhysiol 2015; 593:573–584.
  • Diedrich A, Paranjape SY, Robertson D. Plasma and blood volume in space. Am J Med Sci. 2007 Jul; 334(1):80-5. doi: 10.1097/MAJ.0b013e318065b89b. Erratum in: Am J Med Sci. 2007 Sep; 334(3):234. PMID: 17630598.
  • Latham RD, Fanton JW, White CD, et al. Circulatory filling pressures during transient microgravity induced by parabolic flight. Physiologist 1993; 36: S18–S19.
  • Wieling W, Halliwill JR, Karemaker JM. Orthostatic intolerance after space flight. J Physiol. 2002 Jan 1; 538(Pt 1):1. doi: 10.1113/jphysiol.2001.013372. PMID: 11773310; PMCID: PMC2290012.
  • Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during shortterm spaceflight. J ApplPhysiol 1996; 81:105–116.
  • Frings-Meuthen P, Luchitskaya E, Jordan J, et al. Natriuretic peptide resetting in astronauts. Circulation 2020; 141:1593–1595.
  • Garrett-Bakelman FE, Darshi M, Green SJ et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 2019; 364.
  • Inglesby DC, Antonucci MU, Spampinato MV, et al. Spaceflight-Associated Changes in the Opacification of the Paranasal Sinuses and Mastoid Air Cells in Astronauts. JAMA Otolaryngol Head Neck Surg. 2020 Jun 1; 146(6):571-577. doi: 10.1001/jamaoto.2020.0228. PMID: 32215610; PMCID: PMC7099529.
  • Thornton WE, Moore TP, Pool SL. Fluid shifts in weightlessness. Aviat Space Environ Med. 1987 Sep; 58(9 Pt 2): A86-90. PMID: 3675511.
  • Olabi AA, Lawless HT, Hunter JB, et al. The effect of microgravity and space flight on the chemical senses. J Food Sci 2002; 67:468–478.
  • Frank. O. (1895) ZurDynamik des Herzmuskels. ZeitschriftfürBiologie. 32, 370-447. [Translated by Chapman, C. B. & Wasserman, E. (1959) American Heart Journal, 58, 282-317,467-478].
  • Levine BD. Regulation of central blood volume and cardiac filling in endurance athletes: the Frank-Starling mechanism as a determinant of orthostatic tolerance. Med Sci Sports Exerc. 1993 Jun; 25(6):727-32. PMID: 8321111.
  • Zirngast B, Berboth L, Manninger M, et al. Impact of Increasing Lower Body Negative Pressure and Its Abrupt Release on Left Ventricular Hemodynamics in Anesthetized Pigs. J Clin Med. 2022 Oct 3; 11(19):5858. doi: 10.3390/jcm11195858. PMID: 36233725; PMCID: PMC9571543.
  • Bainbridge, F. A. (1915). The influence of venous filling upon the rate of the heart.J. Phy8iol. 50, 65-84.
  • Jones JJ. The Bainbridge reflex. J Physiol. 1962 Feb;160(2):298-305. doi:0.1113/jphysiol.1962.sp006847. PMID: 14452295; PMCID: PMC1359533.
  • Boettcher DH, Zimpfer M, Vatner SF. Phylogenesis of the Bainbridge reflex. Am J Physiol. 1982 Mar;242(3): R244-6. doi: 10.1152/ajpregu.1982.242.3. R244. PMID: 7065218.
  • Eckberg DL, Halliwill JR, Beightol LA, et al. Human vagal baroreflex mechanisms in space. J Physiol. 2010 Apr 1;588(Pt 7):1129-38. doi: 10.1113/jphysiol. 2009.186650. Epub 2010 Feb 15. PMID: 20156846; PMCID: PMC2853000.
  • Beckers F, Verheyden B, Liu J & Aubert AE (2009). Cardiovascular autonomic control after short-duration spaceflights. Acta Astronaut 65, 804–812.
  • Crystal G J & Salem MR. (2012). The Bainbridge and the “Reverse” Bainbridge Reflexes. Anesthesia & Analgesia, 114(3), 520–532. doi:10.1213/ane.0b013e3182312e21
  • Iellamo F, Di Rienzo M, Lucini D, et al. Muscle metaboreflex contribution to cardiovascular regulation during dynamic exercise in microgravity: insights from mission STS-107 of the space shuttle Columbia. J Physiol. 2006 May 1; 572(Pt 3):829-38. doi: 10.1113/jphysiol.2005.102426. PMID: 16469787; PMCID: PMC1779995.
  • Gauer OH, Henry JP. Circulatory basis of fluid volume control. Physiol Rev. 1963 Jul; 43:423-81. doi: 10.1152/physrev.1963.43.3.423. PMID: 13946831.
  • Henry JP, Gauer OH, Reeves JL. Evidence of the atrial location of receptors influencing urine flow. Circ Res. 1956 Jan; 4(1):85-90. doi: 10.1161/01.res.4.1.85. PMID: 13277115.
  • Greenleaf JE. Mechanism for negative water balance during weightlessness: an hypothesis. J ApplPhysiol (1985). 1986 Jan;60(1):60-2. doi: 10.1152/jappl.1986.60.1.60. PMID: 3944046.
  • Tomilovskaya ES, Shigueva TA, Sayenko DG, et al. Dry immersion as a ground-based model of microgravity physiological effects // Frontiers in Physiol. 2019. https://doi. org/10.3389/fphys.2019.00284
  • von Bezold A, Hirt L. Uber die Physiologischen Wirkunger des Essigsauren Veratrins. Unter Aus Dern Physiologischen Laboratorium Wurtzburg 1867; 1: 75-156.
  • Jarisch A, Zotterman Y. Depressor reflexes from the heart. Acta Physiol Scand 1948; 16:31-51.
  • Lovelace JW, Ma J, Yadav S, Chhabria K, et al. Vagal sensory neurons mediate the Bezold-Jarisch reflex and induce syncope. Nature. 2023 Nov; 623(7986):387- 396. doi: 10.1038/s41586-023-06680-7. Epub 2023 Nov 1. PMID: 37914931; PMCID: PMC10632149.
  • Piwinski SE, Jankovic J, McElligott MA. A comparison of postspace-flight orthostatic intolerance to vasovagal syncope and autonomic failure and the potential use of the alpha agonist midodrine for these conditions. J ClinPharmacol. 1994 May; 34(5):466-71. doi: 10.1002/j.1552-4604. 1994. tb04988. x. PMID: 7522240.
  • Epstein SE, Stampfer M, Beiser GD. Role of the capacitance and resistance vessels in vasovagal syncope. Circulation. 1968 Apr; 37(4):524-33. doi: 10.1161/01. cir.37.4.524. PMID: 5649078.
  • Sharpey-Schafer ЕР. Emergencies in general practice: Syncope. BMJ. 1956; 1: 506-509
  • Oberg B, Thoren P. Increased activity in left ventricular receptors during hemorrhage or occlusion of caval veins in the cat: a possible cause of the vaso-vagal reaction. ActaPhysiolScand 1972; 85:164-173.
  • Кosinski D, Grubb BP, Temesy-Armos P. Pathophysiological aspects of neurocardiogenic syncope: current concepts and new perspective. PACE 1995; 18:716-724.
  • Charles JB, Lathers CM: Cardiovascular adaptation to spaceflight. JClin PharmacoI1991; 31:1010-23.
  • Mulvagh SL, Charles JB, Riddle JM, Rehbein TL, Bungo MW. Echocardiographic evaluation of the cardiovascular effects of short-duration space flight. J Clin Pharmacol 1991; 31:1024-6.
Еще
Статья научная