Special aspects of the cardiovascular system regulation and cerebral blood flow under gravitational influences. Review (part 2)
Автор: Bersenev E.Y., Demina P.N., Kaurova D.E., Kaspransky R.R., Berseneva I.A.
Журнал: Cardiometry @cardiometry
Рубрика: Original research
Статья в выпуске: 31, 2024 года.
Бесплатный доступ
This survey presents the material of neuroradiologic methods of investigation brain structures and function which changes during space flight. It’s taken to attention from inspection of cerebral blood circulation, reversibility of changes in the volumes of gray and white matter, features of neuroplasticity and the formation of new connectivity properties not previously discovered on Earth. The results of magnetic resonance imaging studies, changes in the balance of body fluids, indicators of the cardiovascular system under orthostatic testing, and features of the formation of blood circulation regulation during sleep, which is an integral component of adaptation to microgravity conditions, are presented.
Weightlessness, gravitational upload, microgravitational modeling, orthostatic intolerance, cerebral blood flow, mri investigation
Короткий адрес: https://sciup.org/148328850
IDR: 148328850 | DOI: 10.18137/cardiometry.2024.31.198207
Список литературы Special aspects of the cardiovascular system regulation and cerebral blood flow under gravitational influences. Review (part 2)
- Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23.
- Kawai Y, et al. Effects of microgravity on cerebral hemodynamics. Yonago Acta Medica. 2003; 46(1):1–8
- Mader TH, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011; 118(10): 2058–69
- Blaber AP, et al. Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke. 2011 Jul;42(7):1844-50. doi: 10.1161/STROKEAHA.110.610576. Epub 2011 May 26. PMID: 21617145.
- Goswami N, et al. Maximizing information from space data resources: A case for expanding integration across research disciplines. Eur J Appl Physiol. 2013; 113(7):1645–54
- Man’ko OM, Smoleyevskiy AYe, Tomilovskaya YeS. Changes in eye hydrodynamics as a factor in the pathogenesis of space neuroocular syndrome (SANS). Aviakosmicheskaya i ekologicheskaya meditsina. 2021;55(1):38-45.
- Bersenev EYu, et al. Special aspects of the cardiovascular system regulation and cerebral blood flow under gravitational influences. Review (part 1). Cardiometry. February 2024;30:16-26; DOI: 10.18137/cardiometry.2024.30.1626
- Kakurin LI. Effects of limited muscle activity on physiological systems of the organism. Kosmicheskaya biologiya i meditsina. 1968;2(2):59–71.
- Kakurin LI, et al. Some physiological effects caused by antiorthostatic hypokinesia. Byul. kosmich. biologii i meditsiny. 1975;13:3-19.
- Kovalenko YeA. Basic methods for modeling the biological effects of weightlessness // Kosmicheskaya biol. 1977;11(4):3-9;
- Lobachik VI, Zhidkov VV, Abrosimov SV. The state of the fluid phases of the body in the dynamics of 120-day antiorthostatic hypokinesia. Kosmich. Biologiya i aviakosmich. meditsina. 1989, t.23, №5.
- Pavy-Le Traon A, et al. From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur. J. Appl. Physiol. 2007;101:143–94. 10.1007/s00421-007-0474-z
- Smith SM, et al. Long-duration space flight and bed rest effects on testosterone and other steroids. J Clin Endocrinol Metab. 2012 Jan;97(1):270-8. doi: 10.1210/jc.2011-2233. Epub 2011 Nov 2. Erratum in: J Clin Endocrinol Metab. 2012 Sep;97(9):3390. PMID: 22049169; PMCID: PMC3251930.
- Pandiarajan M, Hargens AR. Ground-Based Analogs for Human Spaceflight. Front Physiol. 2020 Jun 23;11:716. doi: 10.3389/fphys.2020.00716. PMID: 32655420; PMCID: PMC7324748.
- Bergouignan A, et al. Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol (1985). 2011 Oct;111(4):1201-10. doi: 10.1152/japplphysiol.00698.2011. Epub 2011 Aug 11. PMID: 21836047.
- Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985). 2016 Apr 15;120(8):891-903. doi: 10.1152/japplphysiol.00935.2015. Epub 2016 Feb 18. PMID: 26893033.
- One-year antiorthostatic hypokinesia (ANOG) – physiological model of interplanetary space flight: monography / A.I. Grigoriev, I.B. Kozlovskaya, eds. Moscow, 2018.
- Shulzhenko EB, Vil-Villiams IF. Possibility of longterm water immersion performance by the method of «dry» immersion. Kosmicheskaya biologiya i aviakosmicheskaya meditsina. 1976;10(9):82–4.
- Roberts DR, et al. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI. N Engl J Med. 2017 Nov 2;377(18):1746-1753. doi: 10.1056/ NEJMoa1705129. PMID: 29091569.
- Doroshin A, et al. Brain Connectometry Changes in Space Travelers After Long-Duration Spaceflight. Front Neural Circuits. 2022 Feb 18;16:815838. doi: 10.3389/fncir.2022.815838. PMID: 35250494; PMCID: PMC8894205.
- Van Ombergen A, et al. Brain ventricular volume changes induced by long-duration spaceflight. Proc Natl Acad Sci U S A. 2019 May 21;116(21):10531- 10536. doi: 10.1073/pnas.1820354116. Epub 2019 May 6. PMID: 31061119; PMCID: PMC6535034.
- Jillings S, et al. Macro- and microstructural changes in cosmonauts’ brains after long-duration spaceflight. Sci Adv. 2020 Sep 4;6(36):eaaz9488. doi: 10.1126/sciadv.aaz9488. PMID: 32917625; PMCID: PMC7473746.
- Jillings S, et al. Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity. Commun Biol. 2023 Jan 13;6(1):46. doi: 10.1038/s42003-022-04382-w. PMID: 36639420; PMCID: PMC9839680.
- Frederick Bd, Nickerson LD, Tong Y. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). Neuroimage. 2012 Apr 15;60(3):1913-23. doi: 10.1016/j.neuroimage.2012.01.140. Epub 2012 Feb 9. PMID: 22342801; PMCID: PMC3593078.
- Benarroch EE. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001. doi:10.1016/s0025-6196(12)62272-1.
- Beissner F, et al. The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 2013;33:10503-11. doi:10.1523/JNEUROSCI.1103-13.2013
- Yates BJ, Bolton PS, Macefield VG. Vestibulo-sympathetic responses. Compr Physiol. 2014 Apr;4(2):851-87. doi: 10.1002/cphy.c130041. PMID: 24715571; PMCID: PMC3999523.
- Dampney RA. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R429-43. doi: 10.1152/ajpregu.00051.2015. Epub 2015 Jun 3. PMID: 26041109.
- Shoemaker JK, Goswami R. Forebrain neurocircuitry associated with human reflex cardiovascular control. Front Physiol. 2015 Sep 1;6:240. doi: 10.3389/fphys.2015.00240. PMID: 26388780; PMCID: PMC4555962.
- Gevlich GI. Mechanisms of muscle tone disorders with a decrease in gravitational loads. Moscow: PhDThesis. 1984;1–131.
- Miller TF, et al. Effect of support deprivation and stimulation of the feet support zones on the characteristics of cross stiffness and electromyogram of resting muscles of the calf in 7-day immersion. Aviakosm Ekol. Med. 2010;6:13–8.
- Fomina GA. Mechanisms of changes in human hemodynamics in microgravity conditions and forecast of post-flight orthostatic stability / GA Fomina, AR Kotovskaya, VI Pochuev, AF Zhernavkov. Human physiology. 2008;34(3):92-7.
- Saenko DG. The influence of 120-day antiorthostatic hypokinesia on the state of human postural regulation systems / DG Saenko, IV Saenko, MP Shestakov, AM Ivanov, IB Kozlovskaya. Aerospace and environmental medicine. 2000;34(5):6-10.
- Vinogradova OL. Muscle transverse stiffness and venous compliance under conditions of simulated supportlessness / OL Vinogradova, DV Popov, IV Saenko, I.B. Kozlovskaya. Journal of Gravitational Physiology. 2002; 9(1): 327-9.
- Buckey JC Jr, et al. Orthostatic intolerance after spaceflight. J Appl Physiol (1985). 1996 Jul;81(1):7-18. doi: 10.1152/jappl.1996.81.1.7. PMID: 8828642.
- Nicogossian AE, Charles JB, Bungo MW, Leach- Huntoon CS, Nicgossian AE. Cardiovascular function in space flight. Acta Astronaut. 1991;24:323-8. doi: 10.1016/0094-5765(91)90181-4. PMID: 11540059.
- Gaffney FA. Spacelab Life Sciences flight experiments: an integrated approach to the study of cardiovascular deconditioning and orthostatic hypotension. Acta Astronaut. 1987;15(5):291-4. doi: 10.1016/0094-5765(87)90074-9. PMID: 11538833.
- Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol (1985). 1994 Oct;77(4):1776-83. doi: 10.1152/jappl. 1994.77.4.1776. PMID: 7836199.
- Blomqvist CG. Orthostatic hypotension. Hypertension. 1986 Aug;8(8):722-31. doi: 10.1161/01.hyp.8.8.722. PMID: 3733216.
- Buckey JC Jr, et al. Central venous pressure in space. J Appl Physiol. 1996 Jul;81(1):19-25. doi: 10.1152/jappl.1996.81.1.19. PMID: 8828643.
- Gaffney FA, et al. Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (-5 degrees) in middle-aged healthy men. Am J Cardiol. 1985 Oct 1;56(10):634-8. doi: 10.1016/0002- 9149(85)91025-2. PMID: 4050700.
- Tzeng YC, et al. Assessment of cerebral autoregulation: the quandary of quantification. Am. J. Physiol. Heart Circ. Physiol. 2012;303:658–71. doi: 10.1152/ajpheart.00328.2012
- Armstead WM. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol. Clin. 2016;34:465–77. doi: 10.1016/j.anclin. 2016.04.002
- Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol. Rev. 2018;98:59–87. doi: 10.1152/physrev.00017.2016
- Ackerstaff RG, et al. Influence of biological factors on changes in mean cerebral blood flow velocity in normal ageing: a transcranial Doppler study. Neurol Res. 1990 Sep;12(3):187-91. doi: 10.1080/01616412.1990.11739941. PMID: 1979850.
- Marinoni, M., et al. Sex-related differences in human cerebral hemodynamics. Acta Neurol. Scand. 1998;97:324–7. doi: 10.1111/j.1600-0404.1998.tb05961.x
- Karnik, R., et al. Sex-related differences in acetazolamide- induced cerebral vasomotor reactivity. Stroke. 1996;27, 56–58. doi: 10.1161/01.str.27.1.56
- Kastrup A, Thomas C, Hartmann C, Schabet M. (). Sex dependency of cerebrovascular CO2 reactivity in normal subjects. Stroke. 1997;28, 2353–2356. doi: 10.1161/01.str.28.12.2353
- Wang X, et al. Transfer function analysis of gender- related differences in cerebral autoregulation. Biomed. Sci. Instrum. 2005;41, 48–53.
- Deegan B. M., et al. Gender related differences in cerebral autoregulation in older healthy subjects. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 2859–2862. doi: 10.1109/IEMBS. 2009.5333604
- Roth W, et al. Histopathological differences between the anterior and posterior brain arteries as a function of aging. Stroke 2017;48, 638–644. doi: 10.1161/STROKEAHA. 116.015630
- Petersen LG, Ogoh S. Gravity, intracranial pressure, and cerebral autoregulation. Physiol Rep. 2019 Mar;7(6):e14039. doi: 10.14814/phy2.14039. PMID: 30912269; PMCID: PMC6434070.
- Kermorgant M, et al Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation. Front. Physiol. 2020;11:778. doi: 10.3389/fphys.2020.00778
- Olsen MH, Riberholt CG, Berg RMG, Møller K. Myths and methodologies: Assessment of dynamic cerebral autoregulation by the mean flow index. Exp Physiol. 2024 Apr;109(4):614-623. doi: 10.1113/ EP091327. Epub 2024 Feb 20. PMID: 38376110; PMCID: PMC10988760
- Ruesch A, et al. Comparison of static and dynamic cerebral autoregulation under anesthesia influence in a controlled animal model. PLoS One. 2021 Jan 8;16(1):e0245291. doi: 10.1371/journal.pone.0245291. PMID: 33418561; PMCID: PMC7794034.
- Serrador JM, et al. Cerebral vasoconstriction precedes orthostatic intolerance after parabolic flight. Brain Res Bull. 2000 Sep 1;53(1):113-20. doi: 10.1016/s0361-9230(00)00315-4. PMID: 11033215.
- Ertl, A. C., Diedrich, A., and Biaggioni, I. Baroreflex dysfunction inducedby microgravity: potential relevance to postflight orthostatic intolerance. Clin. Auton. Res. 2000;10, 269–77. doi: 10.1007/bf02281109
- Simpson DM, Payne SJ, Panerai RB The INfoMATAS project: methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab: 271678x211029049.2021. 10.1177/0271678x211029049
- Zhang R, et al. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress. J Appl Physiol (Bethesda, Md: 1985) 1997;83(6):2139–2145. doi: 10.1152/jappl.1997.83.6.2139.
- Yao YJ, et al. Changes of human cerebral bottom arterial hemodynamics during 21 d head-down tilt (-6 degrees) bed-rest. Space Med Med Eng (Beijing). 2001 Feb;14(1):11-6. PMID: 11710390.
- Sun XQ, et al. Effect of lower-body negative pressure on cerebral blood flow velocity during 21 days head-down tilt bed rest. Med Sci Monit. 2005 Jan;11(1):CR1-5. PMID: 15614188.
- Arbeille P, et al. Effect of the elastic compression stockings on the calf veins and tissues during a simulated orthostatic test (LBNP). J Gravit Physiol. 2007 Jul;14(1):P59-60. PMID: 18372699.
- Yang CB, et al. Effects of repeated low body negative pressure (LBNP) exposures on LBNP tolerance. Space Med Med Eng (Beijing). 2000
- F Kawai Y, et al. Effects of microgravity on cerebral hemodynamics. Yonago Acta Med. 2003;46:1–8.
- 67. Marshall-Bowman K. Increased intracranial pressure and visual impairment associated with long duration space-flight [dissertation]. Illkirch-Graffenstaden: International Space University; 2011. eb;13(1):10-3. Chinese. PMID: 12212625.
- Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. Biomedical results from Skylab. NASA SP / R.S. Johnston, L.F. Dietlein, eds. 1977;377:330–8.
- Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 2015;593(3):573–84.
- Watenpaugh, DE, Hargens AR. The Cardiovascular System in Microgravity. In: Handbook of Physiology. Environmental Physiology, Bethesda, MD, 1996; 631-674.
- Thornton WE, Moore TP, Pool SL. Fluid shifts in weightlessness. Aviat Space Environ Med. 1987 Sep; 58(9 Pt 2):A86-90. PMID: 3675511.
- Moore TP, Thornton WE. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med. 1987 Sep;58(9 Pt 2): A91-6. PMID: 3675513.
- Noskov VB, Nichiporuk IA, Grigor’yev AI. Dynamics of liquid media and body composition during long-term space flight (bioimpedance analysis). Aviakosmicheskaya i ekologicheskaya meditsina. 2007; 41(3):3-7
- Polyakov VV, et al. Sleep in space flight. Aerospace Environ. Med. 1994;28:4–7.
- Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res. 1997;6:1–8. 10.1046/j.1365-2869.1997.00028.x
- Barger LK, et al. Prevalence of sleep deficiency and use of hypnotic drugs in astronauts before, during, and after spaceflight: an observational study. Lancet Neurol. 2014;13:904–12.
- Frost JJ, et al. Sleep monitoring: the second manned Skylab mission. Aviat. Space Environ. Med. 1976;47:372–82.
- LeBlanc A., et al. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 2000;1 157–160.
- Eckberg DL. Bursting into space: Alterations of sympathetic control by space travel. Acta Physiol. Scand. 2003;177 299–311. 10.1046/j.1365-201X.2003.01073.x
- Otsuka K, et al. Anti-aging effects of long-term space missions, estimated by heart rate variability. Sci Rep. 2019 Jun 20;9(1):8995. doi: 10.1038/s41598-019-45387-6. PMID: 31222071; PMCID: PMC6586662.
- Otsuka K, et al. Astronauts well-being and possibly anti-aging improved during long-duration spaceflight. Sci Rep. 2021 Jul 21;11(1):14907. doi: 10.1038/s41598-021-94478-w. PMID: 34290387; PMCID: PMC8295322.
- Shiraishi M, et al. Periodic structures and diurnal variation in blood pressure and heart rate in relation to microgravity on space station MIR. Biomed Pharmacother. 2004 Oct;58 Suppl 1:S31-4. doi: 10.1016/ s0753-3322(04)80006-4. PMID: 15754836.
- Verheyden B, Liu J, Beckers F, Aubert AE. Adaptation of heart rate and blood pressure to short and long duration space missions. Respir Physiol Neurobiol. 2009 Oct;169 Suppl 1:S13-6. doi: 10.1016/j.resp.2009.03.008. Epub 2009 Mar 28. PMID: 19833299.
- Manzey D, Lorenz B. Mental performance during short-term and long-term spaceflight. Brain Res Brain Res Rev. 1998 Nov;28(1-2):215-21. doi: 10.1016/s0165-0173(98)00041-1. PMID: 9795225.
- Fu Q, et al. Cardiovascular and sympathetic neural responses to handgrip and cold pressor stimuli in humans before, during and after spaceflight. J Physiol. 2002 Oct 15;544(2):653-64. doi: 10.1113/ jphysiol.2002.025098. PMID: 12381834; PMCID: PMC2290607.
- Van Dongen HP, Baynard MD, Maislin G, Dinges DF. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of traitlike differential vulnerability. Sleep. 2004 May 1;27(3): 423-33. PMID: 15164894.
- Slonov AV, et al. “Analysis of Body Posture Changing, Painfulness, Regulation of the Heart and Breath during night Sleep in Experiment with a 5-Day Dry Immersion,” in 9th International Symposium on Neurocardiology (NEUROCARD 2017), (Belgrade: NEUROCARD).
- Prysyazhnyuk A. et al., “Big data analytics for enhanced clinical decision support systems during spaceflight,” 2017 IEEE Life Sciences Conference (LSC), Sydney, NSW, Australia, 2017, pp. 296-299, doi: 10.1109/LSC.2017.8268201.
- Bersenev EYu, et al. Sleep in 21-Day Dry Immersion. Are Cardiovascular Adjustments Rapid Eye Movement Sleep-Dependent? Front. Physiol. 2021;12:749773. doi: 10.3389/fphys.2021.749773