Spins of supermassive black holes

Бесплатный доступ

Shapes of black hole images, viewed by a distant observer, depend on the distribution of emitting matter around black holes. There are two distinctive astrophysical cases: (1) Luminous stationary background behind the black hole (emission of photons outside the photon spheres). In this case the dark classical black hole shadow is viewed, which is a capture photon cross-section in the black hole gravitational field. (2) Luminous accretion inflow near the black hole event horizon (emission of photons inside the photon spheres). In this case the dark event horizon shadow is viewed, which is a lensed image of the event horizon globe. The existence of hot accreting matter in the vicinity of black hole event horizons is predicted by the Blandford-Znajek mechanism. The basic feature of this mechanism is the existing of electric current embracing the black hole and heating the accretion disk very near the black hole event horizon providing the main contribution to the black hole luminosity. We used the numerically calculated sizes of dark spots in the EHT images of supermassive black holes SgrA* and M87* for inferring their spins, 0.65 0.75, respectively.

Еще

Black holes, general relativity, gravitational lensing

Короткий адрес: https://sciup.org/142240765

IDR: 142240765   |   DOI: 10.17238/issn2226-8812.2023.3-4.54-62

Список литературы Spins of supermassive black holes

  • Abbott B.P. et al. (LIGO Scientific Collaboration and Virgo Collaboration). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 2016, 116, 061102, 16pp.
  • Akiyama, K. et al. Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J., 2019, 875, L1, 17pp.
  • Akiyama, K. et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J., 2019, 875, L2, 28 pp.
  • Akiyama, K. et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration Astrophys. J., 2019, 875, L3, 32 pp.
  • Akiyama, K. et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J., 2019, 875, L4, 52 pp.
  • Akiyama, K. et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J., 2019, 875, L5, 31 pp.
  • Akiyama, K. et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J., 2019, 875, L6, 44 pp.
  • Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. ApJL, 2022, 930, L12, 21pp.
  • Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. ApJL, 2022, 930, L13, 31pp.
  • Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. ApJL, 2022, 930, L14, 64pp.
  • First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. ApJL, 2022, 930, L15, 52pp.
  • Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole ApJL, 2022, 930, L16, 49pp.
  • Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. ApJL, 2022, 930, L17, 44pp.
  • Broderick A.E. et al. Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. ApJL, 2022, 930, L21, 30pp.
  • Kerr R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett., 1963, 11, 237-238.
  • Zel’dovich Ya.B.; Novikov I. D. Relativistic astrophysics. II. Sov. Phys. Usp., 1966, 8, 522-577.
  • Carter B. Global Structure of the Kerr Family of Gravitational Fields. Phys. Rev., 1968, 174, 1559- 1571.
  • Bardeen J.M. Stability of Circular Orbits in Stationary, Axisymmetric Space-Times. Astrophys. J., 1970, 161, 103-109.
  • Lynden-Bell D., Rees M.J. On quasars, dust and the Galactic Centre. MNRAS, 1971, 152. 461-475.
  • Zel’dovich Ya.B., Novikov I.D. Relativistic Astrophysics: Stars and Relativity Vol. 1 (Chicago: Univ. of Chicago Press), 1971 522pp.
  • Bardeen J.M.; Press W.H., Teukolsky S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J., 1972, 178, 347-370.
  • Cunningham C.T., Bardeen J.M. The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. Astrophys. J., 1972, 173, L137-L142.
  • Cunningham C.T., Bardeen J.M. The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. Astrophys. J., 1973, 163, 237-264.
  • Novikov I.D., Thorne K.S. in Black Holes (Eds C DeWitt, B S DeWitt) (New York: Gordon and Breach, 1973) 108 pages.
  • Bardeen J.M., Carter B., Hawking S.W. The four laws of black hole mechanics. Commun. Math. Phys., 1973 31, 161-170.
  • Misner C.W., Thorne K.S., Wheeler J.A. (WH Freeman, San Francisco, CA), 1973, 1304 pages.
  • Bardeen J.M. Timelike and null geodesics in the Kerr metric. In: DeWitt C., DeWitt B.S. (eds.) Black Holes (Gordon and Breach, New York), 1973 pp. 217-239.
  • Zel’dovich Ya.B. Neutron Stars and "Black Holes". Sov. Phys. Usp., 1974, 16, 559-560.
  • Landau L.D., Lifshitz E.M. The Classical Theory of Fields (Oxford: Pergamon Press), 1975, 402 pages.
  • Rees M.J. Relativistic jets and beams in radio galaxies. Nature, 1978, 275, 516-517.
  • Eichler D., Smith M. Why is M87 jet one sided in appearance? Nature, 1983, 303, 779-781.
  • Rees M.J. Black Hole Models for Active Galactic Nuclei. Annu. Rev. Astron. Astrophys., 1984 22, 471-506.
  • Begelman M.C., Blandford R.D., Rees M.J. Theory of extragalactic radio sources. Rev. Mod. Phys., 1984, 56, 255-351
  • Chandrasekhar S. The Mathematical Theory of Black Holes (Oxford: Clarendon Press), 1983, 646 pages.
  • Carter, B. Global Structure of the Kerr Family of Gravitational Fields Phys. Rev., 1968, 174, 1559-1571.
  • Dokuchaev V.I. Birth and life of massive black holes Sov. Phys. Usp., 1991, 34, 447-470.
  • Frolov V.P., Novikov I.D. Black Hole Physics: Basic Concepts and New Developments (Dordrecht: Kluwer Acad. Publ.), 1998, 770 pp.
  • Blandford R. D., Znajek R.L. Electromagnetic extraction of energy from Kerr black holes. MNRAS, 1973, 179, 433-456.
  • Beskin V.S. MHD flows in compact astrophysical objects: accretion, winds and jets (Extraterrestrial Physics & Space Sciences, Springer), 2010
  • Galtsov D.V. Particles and Fields in the Vicinity of Black Holes (Moscow Univ. Press: Moscow, Russia), 1986 288 pages (in Russian).
  • Dokuchaev V.I.; Nazarova N.O. Gravitational lensing of a star by rotating black hole. JETP Letters, 2017, 106, 637-642.
  • Dokuchaev V.I., Nazarova N.O., Smirnov V.P. Event horizon silhouette: Implications to supermassive black holes M87* and SgrA*. Gen. Relativ. Gravit., 2019, 51, 81, 17pp.
  • Dokuchaev V.I., Nazarova N.O. Event horizon image within black hole shadow J. Exp. Theor. Phys., 2019, 128, 578-585
  • Dokuchaev V.I., Nazarova N.O. Brightest point in accretion disk and black hole spin: Implication to the image of black hole M87*. Universe, 2019, 5, 183, 13pp.
  • Dokuchaev V.I. To see invisible: image of the event horizon within the black hole shadow Intern. J. Mod. Phys. D, 2019, 28, 1941005, 16pp.
  • Dokuchaev V.I., Nazarova N.O. Silhouettes of invisible black holes. Phys. Usp., 2020, 63, 583-600.
  • Dokuchaev V.I., Nazarova N.O. Visible shapes of black holes M87* and SgrA* Universe, 2020 Universe 6, 154, 27pp.
  • Dokuchaev V.I., Nazarova N.O. Motion of bright spot in jet from black hole viewed by a distant observer, 2020, https://youtu.be/7j8f_vlTul8.
  • Dokuchaev V.I. Spins of Supermassive Black Holes M87* and SgrA* Revealed from the Size of Dark Spots in Event Horizon Telescope Images. Astronomy, 2023, 2, 141-152.
  • Loeb A., Waxman E. The cumulative background of high energy neutrinos from starburst galaxies. JCAP, 2007, 03, 011.
  • Plavin A., Kovalev Y.Y., Kovalev Yu.A., Troitsky S.V. Observational evidence for the origin of high-energy neutrinos in parsec-scale nuclei of radio-bright active galaxies. Astrophys. J., 2020, 894, 101, 13pp.
  • Kovalev Y. Y., Plavin A. V., Pushkarev A.B. Troitsky S.V. Probing Neutrino Production in Blazars by Millimeter VLBI Galaxies, 2023, 11, 84, 8pp.
  • Tchekhovskoy A., McKinney J.C., Narayan R. General Relativistic Modeling of Magnetized Jets from Accreting Black Holes. J. Phys. Conf. Ser., 2012, 372, 012040, 8pp.
  • McKinney J.C., Tchekhovskoy A., Blandford R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. MNRAS, 2012, 423, 3083-3117.
  • Ressler S. M., Tchekhovskoy A., Quataert E., Chandra M., Gammie C.F. The Disc-Jet Symbiosis Emerges: Modeling the Emission of Sagittarius A* with Electron Thermodynamics. MNRAS, 2017, 467, 3604-3619.
  • Ryan B.R., Ressler S.M. Dolence J.C, Tchekhovskoy A., Gammie C, Quataert E. The Radiative Efficiency and Spectra of Slowly Accreting Black Holes from Two-temperature GRRMHD Simulations ApJL, 2017, 844 L24, 7pp.
  • Shakura N. I.; Sunyaev R. A. 1973 Astronomy and Astrophysics 24, 337
  • ShatskiyA. A.; Novikov I. D.; Kardashev N.S. 2011 Phys. Usp. 54, 381 (2011)
  • Likhachev S. F.; Rudnitskiy A. G.; Shchurov M. A.; Andrianov A. S.; Baryshev A. M.; Chernov S. V.; Kostenko V. I. 2022 MNRAS 511, 668
  • Iorio L. 2023 Is it possible to measure the Lense-Thirring orbital shifts of the short-period S-star S4716 orbiting Sgr A*. Preprint gr-qc/2306.17432
  • Broderick, A.E.; Loeb, A. Imaging the Black Hole Silhouette of M87: Implications for Jet Formation and Black Hole Spin. Astrophys. J., 2009, 697, 1164-1179.
  • Sob’yanin D.N. Black hole spin from wobbling and rotation of the M87 jet and a sign of a magnetically arrested disc. MNRAS, 2018, 479, L65-L69.
  • Reynolds C.S. Observing black holes spin. Nat. Astron., 2019, 3, 41-47.
Еще
Статья научная