Sports talent search: genes versus motor tests
Автор: Imonek J., Idek R.
Журнал: Человек. Спорт. Медицина @hsm-susu
Рубрика: Спортивная тренировка
Статья в выпуске: 3 т.21, 2021 года.
Бесплатный доступ
Aim. The aim of this study was to explain the role of physical fitness testing and genetic analysis in identifying sports talents. Materials and Methods. The research sample included 169 pupils (97 male; mean age = 7.438 y. and 72 female; mean age = 7.227 y.) attending 3 elementary schools in the region of Nitra, Slovakia. All pupils underwent 9 physical tests to determine their general physical abilities. Each performance of pupils in tests was allotted points. Subsequently, 30 pupils with the highest points were selected to undergo 2ml saliva sampling (GeneFix Saliva Collectors) for genetic analysis. Samples were analyzed using the HiScan (Illumina inc, San Diego, USA) apparatus, which allowed for analyzing 400 000 polymorphisms in a human gene. The values of individual genetic score are compared with histogram of genetic score distribution in European population. Softwares Genomestudio (Illumina inc, San Diego, USA) and TANAGRA 1.4.50 were used for data analysis. Results. Based on the analysis we offered parents and coaches comprehensive information about children´s prerequisites for certain type of sports, particularly anaerobic capacity, motivation for sports, muscle pain sensitivity, and type of energy metabolism. Conclusion. Results of the genetic analysis and measurement of motor abilities of selected children aged 7-8 years suggest that genetic testing of young athletes offers a suitable method of identifying performance prerequisites just before their development. Genetic tests can inform trainers and athletes on the type of physical activity (endurance or speed) suitable for the given individual. The results of fitness tests can provide them only with partial information on the momentary state of fitness of children. Genetic analysis may be considered a suitable and practical alternative for fitness-oriented testing of population.
Genetic analysis, fitness tests, 7-year-old pupils, sports talent identification, prerequisites for sport
Короткий адрес: https://sciup.org/147236687
IDR: 147236687 | DOI: 10.14529/hsm210320
Список литературы Sports talent search: genes versus motor tests
- Âberg E., Fandino-Losada A., Sjoholm L.K. et al. The Functional Val158Met Polymorphism in Catechol-O-Methyltransferase (COMT) Is Associated with Depression and Motivation in Men from a Swedish Population-Based Study. Journal of Affective Disorders, 2011, vol. 129, no. 1-3, pp. 158-166. DOI: 10.1016/ j.jad.2010.08.009
- Ahmetov I.I., Rogozkin V.A. Genes, Athlete Status and Training - An Overview. Medicine and Sport Science, 2009, vol. 54, pp. 43-71. DOI: 10.1159/000235696
- Ahmetov I.I., Hakimullina A.M., Lyu-baeva E.V. et al. Effect of HIF1A Gene Polymorphism on Human Muscle Performance. Bulletin of Experimental Biology and Medicine, 2008, vol. 146, no. 3, pp. 351-353. DOI: 10.1007/s10517-008-0291-3
- Auton A., Abecasis G.R., Altshuler D M. et al. A Global Reference for Human Genetic Variation. Nature, 2015, vol. 526 (7571), pp. 68-74. DOI: 10.1038/nature15393
- Berndt S.I., Gustafsson S., Mâgi R. et al. Genome-Wide Meta-Analysis Identifies 11 New Loci for Anthropometric Traits and Provides Insights into Genetic Architecture. Nature Genetics, 2013, vol. 45, no. 5, pp. 501-512. DOI: 10.1038/ng.2606
- Bouchard C., Antunes-Correa L.M., Ashley E.A. et al. Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions. Progress in Cardiovascular Diseases, 2015, vol. 57, no. 4, pp. 337-346. DOI: 10.1016/j.pcad.2014.08.005
- Bouchard C., Sarzynski M.A., Rice T.K. et al. Genomic Predictors of the Maximal O2 Uptake Response to Standardized Exercise Training Programs. Journal of Applied Physiology, 2011, vol. 110, no. 5, pp. 1160-1170. DOI: 10.1152/japplphysiol.00973.2010
- Buxens A., Ruiz J.R., Arteta D. et al. Can We Predict Top-Level Sports Performance in Power vs Endurance Events? A Genetic Approach. Scandinavian Journal of Medicine and Science in Sports, 2011, vol. 21, no. 4, pp. 570-579. DOI: 10.1111/j. 1600-0838.2009. 01079.x
- Chen C., Sun Y., Liang H. et al. A Meta-Analysis of the Association of CKM Gene Rs8111989 Polymorphism with Sport Performance. Biology of Sport, 2017, vol. 34, no. 4, pp. 323-330. DOI: 10.5114/biolsport.2017.69819
- Döring F., Onur S., Fischer A. et al. A Common Haplotype and the Pro582Ser Polymorphism of the Hypoxia-Inducible Factor-1 (HIF1A) Gene in Elite Endurance Athletes. Journal of Applied Physiology, 2010, vol. 108, pp. 1497-1500. DOI: 10.1152/japplphysiol. 01165.2009
- Ehrenborg E.W., Krook A. Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor. Pharmacological Review, 2009, vol. 61, no. 3, pp. 373-393. DOI: 10.1124/pr.109.001560
- Felix J.F., Bradfield J.P., Monnereau C. et al. Genome-Wide Association Analysis Identifies Three New Susceptibility Loci for Childhood Body Mass Index. Human Molecular Genetics, 2015, vol. 25, no. 2, pp. 1-52. DOI: 10.1093/hmg/ddv472
- Gineviciené V., Jakaitiene A., Prancu-lis A. et al. AMPD1 Rs17602729 Is Associated with Physical Performance of Sprint and Power in Elite Lithuanian Athletes. BMC Genetics, 2014, vol. 15, no. 58. DOI: 10.1186/1471-2156-15-58
- Graff M., Scott R.A., Justice A.E. et al. Genome-Wide Physical Activity Interactions in Adiposity - A Meta-Analysis of 200,452 Adults. ed. Todd L. Edwards. PLoS Genetics, 2017, vol. 13, no. 4, e1006528. DOI: 10.1371/journal. pgen.1006528
- Graff M., North K.E., Richardson A.S. et al. BMI Loci and Longitudinal BMI from Adolescence to Young Adulthood in an Ethnically Diverse Cohort. International Journal of Obesity, 2017, vol. 41, no. 5, pp. 759-768. DOI: 10.1038/ijo.2016.233
- Johnston K., Wattie N., Schorer J., Baker J. Talent Identification in Sport: A Systematic Review. Sports Med, 2018, vol. 48, no. 1, pp. 97-109. DOI: 10.1007/s40279-017-0803-2
- Karoly H.C., Stevens C.J., Magnan R.E. et al. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults. Journal of Cancer Epidemiology, 2012, pp. 1-12. DOI: 10.1155/2012/540563
- Lancaster T.M., Linden D.E., Heerey E.A. COMT Val158met Predicts Reward Responsiveness in Humans. Genes, Brain and Behavior■, 2012, vol. 11, no. 8, pp. 986-992. DOI: 10.1111/j.1601-183X.2012.00838.x
- Machiela M.J., Chanock S.J. LDlink: A Web-Based Application for Exploring Population-Specific Haplotype Structure and Linking Correlated Alleles of Possible Functional Variants. Bioinformatics (Oxford, England), 2015, vol. 31, no. 21, pp. 3555-3557. DOI: 10.1093/bioinformatics/btv402
- Nishida Y., Ivadomi M., Higaki Y. et al. Association between the PPARGC1A Polymorphism and Aerobic Capacity in Japanese Middle-Aged Men. Internal Medicine, 2015, vol. 54, no. 4, pp. 359-366. DOI: 10.2169/internalmedicine.54.3170
- Pickering C., Kiely J. Exercise Genetics: Seeking Clarity from Noise. BMJ Open Sport and Exercice Medicine, 2017, vol. 3, no. 1, e000309. DOI: 10.1136/bmjsem-2017-000309
- Rankinen T., Bouchard C. Genetic Predictors of Exercise Training Response. Current Cardiovascular Risk Reports, 2011, vol. 5, no. 4, pp. 368-372. DOI: 10.1007/s12170-011-0179-z
- Rankinen T., Roth S.M., Bray M.S. et al. Advances in Exercise, Fitness, and Performance Genomics. Medicine & Science in Sports & Exercise, 2010, vol. 42, no. 5, pp. 835-846. DOI: 10.1249/MSS.0b013e3181d86cec
- Rankinen T., Argyropoulos G., Rice T. et al. CREB1 Is a Strong Genetic Predictor of the Variation in Exercise Heart Rate Response to Regular Exercise. Circulation: Cardiovascular Genetics, 2010, vol. 3, no. 3, pp. 294-299. DOI: 10.1161/CIRCGENETICS.109.925644
- Sandholt C.H., Vestmar M.A., Bille D.S. et al. Studies of Metabolic Phenotypic Correlates of 15 Obesity Associated Gene Variants. Ed. Christian Herder. PLoS ONE, 2011, vol. 6, no. 9, e23531. DOI: 10.1371/journal.pone.0023531
- Santiago C., Ruiz J., Buxens A. et al. Trp64Arg Polymorphism in ADRB3 Gene Is Associated with Elite Endurance Performance. British Journal of Sports & Medicine, 2011, vol. 45, no. 2, pp. 147-149. DOI: 10.1136/bjsm. 2009.061366
- Santos C.G.M., Pimentel-Coelho P.M., Budowle B. et al. The Heritable Path of Human Physical Performance: From Single Polymorphisms to the 'next Generation. Scandinavian Journal of Medicine and Science in Sports, 2016, vol. 26, no. 6, pp. 600-612. DOI: 10.1111/sms.l2503
- Thorleifsson G., Walters G.B., Gud-bjartsson D.F. et al. Genome-Wide Association Yields New Sequence Variants at Seven Loci That Associate with Measures of Obesity. Nature Genetics, 2009, vol. 41, no. 1, pp. 18-24. DOI: 10.1038/ng.274
- Willer C.J., Speliotes E.K., Loos R.J. et al. Six New Loci Associated with Body Mass Index Highlight a Neuronal Influence on Body Weight Regulation. Nature Genetics, 2009, vol. 41, no. 1, pp. 25-34. DOI: 10.1038/ng.287
- Zidek R., Simonek J. Talent in Sport. Usti nad Labem, Univerzita J. E. Purkyne, 2019. 102 p.