Standard-dimensional transformation systems for special relativity
Автор: Salouma S., Tawfik A.N.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Рубрика: Гравитация, космология и фундаментальные поля
Статья в выпуске: 3-4 (44-45), 2023 года.
Бесплатный доступ
We introduce a comprehensive framework comprising standard and dimensional reference frames. We suggest a theory composed of three interconnected transformation systems. The standard-dimensional transformation system is combined with a dimensional-dimensional transformation system corresponding to the typical Lorentz- Einstein transformation and the standard-standard system. The velocity at which the dimensional frame moves plays a crucial role so that the Maxwell spherical wave equation remains invariant and the transition of the wave-nature to particle-nature of light becomes subject to the transformation system.The consistency of the proposed standard-dimensional transformation systems can also be examined in implications. We drove the mass and energy equations of a free particle and found that the particle’s velocity and that of the moving frame are essential. We also conclude that the Schrodinger equation remains invariant under the proposed transformation. Further implications to the phenomena challenging special relativity could be carried out elsewhere.
Special relativity, reference frames, standard and dimensional values, foundations of quantum mechanics
Короткий адрес: https://sciup.org/142240770
IDR: 142240770 | DOI: 10.17238/issn2226-8812.2023.3-4.251-270
Список литературы Standard-dimensional transformation systems for special relativity
- A. K. A. Maciel and J. Tiomno. On Experiments To Detect Possible Weak Violations of Special Relativity. Phys. Rev. Lett., 55:143, 1985. 10.17238/issn2226-8812.2023.3-4.251-27010.1103/PhysRevLett.55.143. [Erratum: Phys.Rev.Lett. 57, 1382 (1986)].
- Gian Luigi Fogli, E. Lisi, A. Marrone, and G. Scioscia. Testing violations of special and general relativity through the energy dependence of muon-neutrino tau-neutrino oscillations in the Super-Kamiokande atmospheric neutrino experiment. Phys. Rev. D, 60:053006, 1999. 10.17238/issn2226-8812.2023.3-4.251-27010.1103/PhysRevD.60.053006.
- T. Jacobson, Stefano Liberati, and D. Mattingly. A Strong astrophysical constraint on the violation of special relativity by quantum gravity. Nature, 424:1019–1021, 2003. 10.17238/issn2226-8812.2023.3-4.251-27010.1038/nature01882.
- S. L. Dubovsky and P. G. Tinyakov. Violation of Lorentz invariance and neutral component of UHECR. Astropart. Phys., 18:89–96, 2002. 10.17238/issn2226-8812.2023.3-4.251-27010.1016/S0927-6505(02)00114-7.
- O. W. Greenberg. CPT violation implies violation of Lorentz invariance. Phys. Rev. Lett., 89: 231602, 2002. 10.17238/issn2226-8812.2023.3-4.251-27010.1103/PhysRevLett.89.231602.
- G. Amelino-Camelia, John R. Ellis, N. E. Mavromatos, and Dimitri V. Nanopoulos. Distance measurement and wave dispersion in a Liouville string approach to quantum gravity. Int. J. Mod. Phys. A, 12:607–624, 1997. 10.17238/issn2226-8812.2023.3-4.251-27010.1142/S0217751X97000566.
- Giovanni Amelino-Camelia. Testable scenario for relativity with minimum length. Phys. Lett. B, 510:255–263, 2001. 10.17238/issn2226-8812.2023.3-4.251-27010.1016/S0370-2693(01)00506-8.
- P. Adamson et al. A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector. Phys. Rev. Lett., 105:151601, 2010. 10.17238/issn2226-8812.2023.3-4.251-27010.1103/PhysRevLett.105.151601.
- A. Tawfik, H. Magdy, and A. Farag Ali. Lorentz Invariance Violation and Generalized Uncertainty Principle. Phys. Part. Nucl. Lett., 13:59–68, 2016. 10.17238/issn2226-8812.2023.3-4.251-27010.1134/S1547477116010179.
- Florian Girelli, Tomasz Konopka, Jerzy Kowalski-Glikman, and Etera R. Livine. The Free particle in deformed special relativity. Phys. Rev. D, 73:045009, 2006. 10.17238/issn2226-8812.2023.3-4.251-27010.1103/PhysRevD.73.045009.
- Sergio Doplicher, Klaus Fredenhagen, and John E. Roberts. Spacetime quantization induced by classical gravity. Physics Letters B, 331(1):39–44, 1994. 10.17238/issn2226-8812.2023.3-4.251-270https://doi.org/10.1016/0370-2693(94)90940-7. URL https://www.sciencedirect.com/science/article/pii/0370269394909407.
- J. Kowalski-Glikman and S. Nowak. Doubly special relativity theories as different bases of kappa Poincare algebra. Phys. Lett. B, 539:126–132, 2002. 10.17238/issn2226-8812.2023.3-4.251-27010.1016/S0370-2693(02)02063-4.
- Giovanni Amelino-Camelia. Doubly special relativity. Nature, 418:34–35, 2002. 10.17238/issn2226-8812.2023.3-4.251-27010.1038/418034a.
- A. Tawfik. Impacts of Generalized Uncertainty Principle on Black Hole Thermodynamics and Salecker-Wigner Inequalities. JCAP, 07:040, 2013. 10.17238/issn2226-8812.2023.3-4.251-27010.1088/1475-7516/2013/07/040.
- Abdel Nasser Tawfik and Eiman Abou El Dahab. Corrections to entropy and thermodynamics of charged black hole using generalized uncertainty principle. Int. J. Mod. Phys. A, 30(09):1550030, 2015. 10.17238/issn2226-8812.2023.3-4.251-27010.1142/S0217751X1550030X.
- Abdel Nasser Tawfik and Abdel Magied Diab. Black Hole Corrections due to Minimal Length and Modified Dispersion Relation. Int. J. Mod. Phys. A, 30(12):1550059, 2015. 10.17238/issn2226-8812.2023.3-4.251-27010.1142/S0217751X15500591.
- J.B. Marion. Classical Dynamics of Particles and Systems. Academic Press International Edition. Academic Press, 1965. URL https://books.google.com.eg/books?id=-FjvAAAAMAAJ.
- A. Einstein. The Special and General Theory: The Special and General Theory by Albert Einstein: The Special and General Theory - Einstein’s Groundbreaking Work. Prabhat Prakashan, 1948. ISBN 9788184302288. URL https://books.google.com.eg/books?id=CbwwBQAAQBAJ.
- Rachel E Scherr, Peter S Shaffer, and Stamatis Vokos. Student understanding of time in special relativity: Simultaneity and reference frames. American Journal of Physics, 69(S1):S24–S35, 2001.
- Youshan Dai and Liang Dai. New derivation of space-time linear transformation between inertial frames based on the principle of relativity. Results in Physics, 19:103552, 2020. ISSN 2211-3797. 10.17238/issn2226-8812.2023.3-4.251-270https://doi.org/10.1016/j.rinp.2020.103552. URL https://www.sciencedirect.com/science/article/pii/S2211379720319975.
- Frank Verheest. On the linearity of the generalized Lorentz transformation. American Journal of Physics, 90(6):425–429, 06 2022. ISSN 0002-9505. 10.17238/issn2226-8812.2023.3-4.251-27010.1119/10.0010234. URL https://doi.org/10.1119/10.0010234.
- S.T. Thornton and A. Rex. Modern Physics for Scientists and Engineers. Cengage Learning, 2012. ISBN 9781133712237. URL https://books.google.com.eg/books?id=pWAKAAAAQBAJ.
- R.H. Dicke and J.P. Wittke. Introduction to Quantum Mechanics, by Robert H. Dicke and James P. Wittke. Addison-Wesley Publishing Company, 1961. URL https://books.google.com.eg/books?id=tbHCswEACAAJ.
- E. Huggins. Physics 2000. Moose Mountain Digital Press, 1999. ISBN 9780970783639. URL https://books.google.com.eg/books?id=03HvwQEACAAJ.
- M. Katz. Introduction to Geometrical Optics. G - Reference,Information and Interdisciplinary Subjects Series. World Scientific, 2002. ISBN 9789812382245. URL https://books.google.com.eg/books?id=agsOmxYsyCIC.
- I. Newton, A. Motte, and N.W. Chittenden. Newton’s Principia: The Mathematical Principles of Natural Philosophy. Nineteenth Century Collections Online (NCCO): Science, Technology, and Medicine: 1780-1925. Geo. P. Putnam, 1850. URL https://books.google.com.eg/books?id=N-hHAQAAMAAJ.
- H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics. Addison-Wesley series in physics. Addison Wesley, 2002. ISBN 9780321188977. URL https://books.google.com.eg/books?id=EE-wQgAACAAJ.
- D. McMahon. Quantum Mechanics Demystified. Demystified series. McGraw-Hill Education, 2005. ISBN 9780071486705. URL https://books.google.com.eg/books?id=VAq1Z4GClUoC.
- D.J. Griffiths and D.F. Schroeter. Introduction to Quantum Mechanics. Cambridge University Press, 2018. ISBN 9781107189638. URL https://books.google.com.eg/books?id=82FjDwAAQBAJ.
- N. Ashby and S.C. Miller. Principles of Modern Physics. Holden-Day series in physics. Holden-Day, 1970. URL https://books.google.com.eg/books?id=my4bAQAAIAAJ.