Stochastic Leontief type equations with impulse actions

Бесплатный доступ

By a stochastic Leontief type equation we mean a special class of stochastic differential equations in the Ito form, in which there is a degenerate constant linear operator in the left-hand side and a non-degenerate constant linear operator in the right-hand side. In addition, in the right-hand side there is a deterministic term that depends only on time, as well as impulse effects. It is assumed that the diffusion coefficient of this system is given by a square matrix, which depends only on time. To study the equations under consideration, it is required to consider derivatives of sufficiently high orders from the free terms, including the Wiener process. In connection with this, to differentiate the Wiener process, we apply the machinery of Nelson mean derivatives of random processes, which makes it possible to avoid using the theory of generalized functions to the study of equations. As a result, analytical formulas are obtained for solving the equation in terms of mean derivatives of random processes.

Еще

Mean derivative, current velocity, wiener process, stochastic leontief type equation

Короткий адрес: https://sciup.org/147232886

IDR: 147232886   |   DOI: 10.14529/mmp180205

Список литературы Stochastic Leontief type equations with impulse actions

  • Шестаков, А.Л. Новый подход к измерению динамически искаженных сигналов / А.Л. Шестаков, Г.А. Свиридюк // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2010. - № 16 (192), вып. 5. - С. 116-120.
  • Shestakov, A.L. The Theory of Optimal Measurements / A.L. Shestakov, A.V. Keller, G.A. Sviridyuk // Journal of Computational and Engineering Mathematics. - 2014. - V. 1, № 1. - P. 3-16.
  • Shestakov, A.L. On the Measurement of the White Noise / A.L. Shestakov, G.A. Sviridyuk // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2012. - № 27 (286), вып. 13. - P. 99-108.
  • Schein, O. Numerical Solution of Stochastic Differential-Algebraic Equations with Applications to Transient Noise Simulation of Microelectronic Circuits / O. Schein, G. Denk // Journal of Computational and Applied Mathematics. - 1998. - V. 100, № 1. - P. 77-92.
  • Sickenberger, T. Stochastic Oscillations in Circuit Simulation / T. Sickenberger, R. Winkler // Proceeding in Applied Mathematics and Mechanics. - 2007. - V. 7, № 1. - P. 4050023-4050024.
  • Winkler, R. Stochastic DAEs in Transient Noise Simulation / R. Winkler // Proceedings of Scientific Computing in Electrical Engineering. - 2004. - V. 4. - P. 408-415.
  • Власенко, Л.А. Об одной стохастической модели динамики предприятий корпорации / Л.А. Власенко, Ю.Г. Лысенко, А.Г. Руткас // Экономическая кибернетика. - 2011. - № 1-3 (67-69). - С. 4-9.
  • Vlasenko, L.A. On a Stochastic Impulsive Sustem / L.A. Vlasenko, S.L. Lyshko, A.G. Rutkas // Reports of the National Academy of Sciences of Ukraine. - 2012. - № 2. - P. 50-55.
  • Белов, А.А. Дескрипторные системы и задачи управления / А.А. Белов, А.П. Курдюков. - М.: Физматлит, 2015.
  • Машков, Е.Ю. Стохастические уравнения леонтьевского типа с коэффициентом диффузии, зависящим от времени / Е.Ю. Машков // Вестник Воронежского государственного университета. Серия: Физика. Математика. - 2017. - № 3. - С. 148-158.
  • Mashkov, E.Yu. Singular Stochastic Leontieff Type Equation with Depending on Time Diffusion Coefficients / E.Yu. Mashkov // Global and Stochastic Analysis. - 2017. - V. 4, № 2. - P. 207-2.517.
  • Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics / E. Nelson // Physics Reviews. - 1966. - V. 150, № 4. - P. 1079-1085.
  • Nelson, E. Dynamical Theory of Brownian Motion / E. Nelson. - Princeton: Princeton University Press, 1967.
  • Nelson, E. Quantum Fluctuations / E. Nelson. - Princeton: Princeton University Press, 1985.
  • Гликлих, Ю.Е. Глобальный и стохастический анализ в задачах математической физики / Ю.Е. Гликлих. - М.: Комкнига, 2005.
  • Gliklikh, Yu.E. Stochastic Leontieff Type Equation with Non-Constant Coefficients / Yu.E. Gliklikh, E.Yu. Mashkov // Applicable Analysis: An International Journal. - 2015. - V. 94, № 8. - P. 1614-1623.
  • Гликлих, Ю.Е. Стохастические уравнения леонтьевского типа и производные в среднем случайных процессов / Ю.Е. Гликлих, Е.Ю. Машков // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2013. - Т. 6, № 2. - С. 25-39.
  • Партасарати, К.Р. Введение в теорию вероятностей и теорию меры / К.Р. Партасарати. - М.: Мир, 1988.
  • Гантмахер, Ф.Р. Теория матриц / Ф.Р. Гантмахер. - М.: Физматлит, 1967.
  • Гихман, И.И. Теория случайных процессов / И.И. Гихман, А.В. Скороход. - М.: Наука, 1975.
Еще
Статья научная