Stochastic Leontieff type equations in terms of current velocities of the solution II
Автор: Gliklikh Yu.E., Mashkov E.Yu.
Рубрика: Математическое моделирование
Статья в выпуске: 3 т.9, 2016 года.
Бесплатный доступ
In papers by A.L. Shestakov and G.A. Sviridyuk a new model of the description of dynamically distorted signals in some radio devices is suggested in terms of so-called Leontieff type equations (a particular case of algebraic-differential equations). In that model the influence of noise is taken into account in terms of the so-called symmetric mean derivatives of the Wiener process instead of using white noise. This allows the authors to avoid using the generalized function. It should be pointed out that by physical meaning, the current velocity is a direct analog of physical velocity for the deterministic processes. Note that the use of current velocity of the Wiener process means that in the construction of mean derivatives the σ-algebra "present" for the Wiener process is under consideration while there is also another possibility: to deal with the σ-algebra "present" of the solution as it is usually done in the theory of stochastic differential equation with mean derivatives. This approach was previously suggested by the authors under the assumption that the matrix pencil, that determines the equation, satisfies the so-called "rank-degree" condition. In this paper we consider stochastic Leontieff type equation given in terms of current velocities of the solution without this assumption.
Mean derivatives, current velocities, stochastic leontieff type equations
Короткий адрес: https://sciup.org/147159382
IDR: 147159382 | DOI: 10.14529/mmp160303
Список литературы Stochastic Leontieff type equations in terms of current velocities of the solution II
- Шестаков, А.Л. Новый подход к измерению динамически искаженных сигналов/А.Л. Шестаков, Г.А. Свиридюк//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2010. -№ 16 (192), вып. 5. -С. 116-120.
- Шестаков, А.Л. Оптимальное измерении динамически искаженных сигналов/А.Л. Шестаков, Г.А. Свиридюк//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2011. -№ 17 (234), вып. 8. -С. 70-75.
- Шестаков, А.Л. Об измерении белого шума/А. Л. Шестаков, Г. А. Свиридюк//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2012. -№ 27 (286), вып. 13. -С. 99-108.
- Гликлих, Ю.Е. Изучение уравнений леонтьевского типа с белым шумом методами производных в среднем случайных процессов/Ю.Е. Гликлих//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2012. -№ 27 (286), вып. 13. -С. 24-34.
- Gliklikh, Yu.E. Stochastic Leontieff Type Equations and Mean Derivatives of Stochastic Processes/Yu.E. Gliklikh, E.Yu. Mashkov//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2013. -Т. 6, № 2 -С. 25-39.
- Gliklikh, Yu.E. Stochastic Leontieff Type Equations in Terms of Current Velocities of the Solution/Yu.E. Gliklikh, E.Yu. Mashkov//Journal of Computational and Engineering Mathematics. -2014. -V. 1, № 2. -P. 45-51.
- Nelson, E. Derivation of the Schrodinger Equation from Newtonian Mechanics/E. Nelson//Physical Review. -1966. -V. 150, № 4. -P. 1079-1085.
- Nelson, E. Dynamical Theory of Brownian Motion/Nelson E. -Princeton: Princeton University Press. -1967. -114 p.
- Nelson, E. Quantum Fluctuations/E. Nelson. -Princeton: Princeton University Press. -1985. -146 p.
- Партасарати, К. Введение в теорию вероятностей и теорию меры/К. Партасарати. -М.: Мир. -1988. -343 с.
- Gliklikh, Yu.E. Global and Stochastic Analysis with Applications to Mathematical Physics/Yu.E. Gliklikh. -London: Springer. -2011. -465 p.
- Cresson, J. Stochastic Embedding of Dynamical Systems/J. Cresson, S. Darses//Journal of Mathematical Physics. -2007. -V. 48. -P. 072703-1-072303-54.
- Azarina, S.V. Differential Inclusions with Mean Derivatives/S.V. Azarina, Yu.E. Gliklikh//Dynamic Systems and Applications. -2007. -V. 16, № 1. -P. 49-71.
- Чистяков, В.Ф. Избранные главы теории алгебро-дирфференциальных систем/В.Ф. Чистяков, А.А. Щеглова. -Новосибирск: Наука. -2003. -319 с.
- Гантмахер, Ф.Р. Теория матриц/Ф.Р. Гантмахер. -М.: Физматлит. -1967. -575 с.
- Azarina, S.V. On Existence of Solutions to Stochastic Differential Equations with Current Velocities/S.V. Azarina, Yu.E. Gliklikh//Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. -2015. -V. 8, № 4. -P. 100-106.