Структурная многоэлементная модель вязкоупругого материала: концепция и экспериментальная проверка

Автор: Мишнаев М.В., Задорин А.А., Королев А.С., Альбугина Д.А., Пьянкова А.Ю., Шамбергер А.А., Стастушкин В.М.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 4 (109), 2023 года.

Бесплатный доступ

Объект исследования. В работе представлены результаты экспериментальных исследований и математического моделирования формирования напряжений в термопластичном полимере (винилпластике) при циклическом термомеханическом нагружении. Накопление напряжений происходит при циклическом термомеханическом нагружении в защемленном стержне, аналогичные эффекты наблюдаются, например, в термопластичных элементах, подвергающихся совместным механическим нагрузкам и переменным температурам.

Термопластичные полимеры, композиты, термомеханическая нагрузка, вязкоупругость, накопление напряжений

Короткий адрес: https://sciup.org/143182716

IDR: 143182716   |   DOI: 10.4123/CUBS.109.23

Список литературы Структурная многоэлементная модель вязкоупругого материала: концепция и экспериментальная проверка

  • Anoshkin A. N., Pospelov A. B. and YAkushev R. M. (2014) Osobennosti Deformirovaniya i Razrusheniya Kombinirovannyh Polimernyh Trub Pri Nizkih Temperaturah. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika, 2, 5–28. https://doi.org/10.15593/perm.mech/2014.2.01.
  • Bochkareva S.A., Grishaeva N.Yu., Lyukshin B.A., Lyukshin P.A., Matolygina N.Yu., Panin S.V. and Reutov Yu.A. (2018) RELIABILITY ASSESSMENT OF MULTILAYER PIPES FROM POLYMER MATERIALS. PNRPU Mechanics Bulletin, 162–168. https://doi.org/10.15593/perm.mech/2018.4.15.
  • Malikov D. A., Vasyutkin E. S., Burin D. L., Dzhalalov A. I., Ismailov A. M., Kovalev M. A., Tokarev V. O. and Birryukov D. V. (2021) Durability and Performance of Composite Pipes Under Conditions of Exposure to High Temperatures of the Transported Liquid. AlfaBuild. https://doi.org/10.34910/ALF.18.5.
  • Danzanova E. V. and Struchkov A. S. (2006) Optimal'nye Konstruktivnye Parametry Biplastmassovyh Trub Dlya Transportirovki Nefti. Nauka i obrazovanie, 1, 28–31. https://cyberleninka.ru/article/n/optimalnye-konstruktivnye-parametry-biplastmassovyh-trub-dlya-transportirovki-nefti/viewer.
  • Astashkin V.M., Shmatkov S.B. and Shmatkov A.S. (2015) Polymer Composite Gas Exhaust Pipes in Chimneys of Large-Scale Power Industry. Bulletin of the South Ural State University. Ser. Construction Engineering and Architecture, 15, 20–25. https://cyberleninka.ru/article/n/gazootvodyaschie-stvoly-iz-polimernyh-kompozitov-v-dymovyh-trubah-bolshoy-energetiki.pdf
  • da Silva, T.R., de Azevedo, A.R.G., Cecchin, D., Marvila, M.T., Amran, M., Fediuk, R., Vatin, N., Karelina, M., Klyuev, S. and Szelag, M. (2021) Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials. https://doi.org/10.3390/ma14133549.
  • Astashkin V.M. and Liholetov V.V. (1985) Formirovanie Ostatochnyh Napryazhenij v Plastmassovyh Elementah Konstrukcij Pri Teplosmenah v Usloviyah Stesnennoj Deformacii. Izvestiya VUZov. Stroitel'stvo i arhitektura, 10, 128–131. https://doi.org/10.13140/RG.2.2.29179.94249.
  • Shokrieh, M.M. (2014) Residual Stresses in Composite Materials. Residual Stresses in Composite Materials. https://doi.org/10.1533/9780857098597.
  • Thakkar, B. (2020) Influence of Residual Stresses on Mechanical Behavior of Polymers. Plastics Products Design Handbook. https://doi.org/10.1201/9781003064886-13.
  • Shokrieh, M.M. and Safarabadi, M. (2021) Understanding Residual Stresses in Polymer Matrix Composites. Residual Stresses in Composite Materials. https://doi.org/10.1016/B978-0-12-818817-0.00011-1.
  • Dai, F. (2014) Understanding Residual Stresses in Thick Polymer Composite Laminates. Residual Stresses in Composite Materials. https://doi.org/10.1533/9780857098597.2.311.
  • Hahn, H.T. (1976) Residual Stresses in Polymer Matrix Composite Laminates. Journal of Composite Materials, 10. https://doi.org/10.1177/002199837601000401.
  • Struik, L.C.E. (1978) Orientation Effects and Cooling Stresses in Amorphous Polymers. Polymer Engineering & Science, 18. https://doi.org/10.1002/pen.760181011.
  • Di Landro, L. and Pegoraro, M. (1996) Evaluation of Residual Stresses and Adhesion in Polymer Composites. Composites Part A: Applied Science and Manufacturing, Elsevier, 27, 847–853. https://doi.org/10.1016/1359-835X(96)00046-2.
  • Jain, A. and Yi, A.Y. (2005) Numerical Modeling of Viscoelastic Stress Relaxation during Glass Lens Forming Process. Journal of the American Ceramic Society, 88. https://doi.org/10.1111/j.1551-2916.2005.00114.x.
  • Zhou, X., Yu, D. and Barrera, O. (2023) Mechanics Constitutive Models for Viscoelastic Solid Materials: Development and a Critical Review. Advances in Applied Mechanics, Academic Press Inc., 56, 189–321. https://doi.org/10.1016/bs.aams.2022.09.003.
  • Zhang, J.T., Zhang, M., Li, S.X., Pavier, M.J. and Smith, D.J. (2016) Residual Stresses Created during Curing of a Polymer Matrix Composite Using a Viscoelastic Model. Composites Science and Technology, 130. https://doi.org/10.1016/j.compscitech.2016.05.002.
  • Chen, Q., Chen, X., Zhai, Z., Zhu, X. and Yang, Z. (2016) Micromechanical Modeling of Viscoplastic Behavior of Laminated Polymer Composites with Thermal Residual Stress Effect. Journal of Engineering Materials and Technology, Transactions of the ASME, 138. https://doi.org/10.1115/1.4033070.
  • Yuan, Z., Wang, Y., Yang, G., Tang, A., Yang, Z., Li, S., Li, Y. and Song, D. (2018) Evolution of Curing Residual Stresses in Composite Using Multi-Scale Method. Composites Part B: Engineering, 155. https://doi.org/10.1016/j.compositesb.2018.08.012.
  • Parlevliet, P.P., Bersee, H.E.N. and Beukers, A. (2006) Residual Stresses in Thermoplastic Composites—A Study of the Literature—Part I: Formation of Residual Stresses. Composites Part A: Applied Science and Manufacturing, Elsevier, 37, 1847–1857. https://doi.org/10.1016/J.COMPOSITESA.2005.12.025.
  • (2020) Formation and Test Methods of the Thermo-Residual Stresses for Thermoplastic Polymer Matrix Composites. Civil, Architecture and Environmental Engineering. https://doi.org/10.1201/9781315226187-109.
  • Nagel, L., Herwig, A., Schmidt, C. and Horst, P. (2021) Numerical Investigation of Residual Stresses in Welded Thermoplastic Cfrp Structures. Journal of Composites Science, 5. https://doi.org/10.3390/jcs5020045.
  • Xin, X., Liu, L., Liu, Y. and Leng, J. (2019) Mechanical Models, Structures, and Applications of Shape-Memory Polymers and Their Composites. Acta Mechanica Solida Sinica. https://doi.org/10.1007/s10338-019-00103-9.
  • Raghavan, J. and Meshii, M. (1998) Creep of Polymer Composites. Composites Science and Technology, 57. https://doi.org/10.1016/S0266-3538(97)00104-8.
  • Nguyen, T., Li, J., Sun, L., Tran, D. and Xuan, F. (2021) Viscoelasticity Modeling of Dielectric Elastomers by Kelvin Voigt-Generalized Maxwell Model. Polymers, 13. https://doi.org/10.3390/polym13132203.
  • Lai, J., Mao, S., Qiu, J., Fan, H., Zhang, Q., Hu, Z. and Chen, J. (2016) Investigation Progresses and Applications of Fractional Derivative Model in Geotechnical Engineering. Mathematical Problems in Engineering, 2016, 1–15. https://doi.org/10.1155/2016/9183296.
  • Sadakov O.S. and SHul'zhenko S.I. (2003) Ispol'zovanie Strukturnoj Modeli Dlya Opisaniya Reologicheskih Svojstv Dvuhfaznyh Sredstv . Vestnik YUzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Fizika, 67–71. https://cyberleninka.ru/article/n/ispolzovanie-strukturnoy-modeli-dlya-opisaniya-reologicheskih-svoystv-dvuhfaznyh-sred/viewer.
  • Astashkin V.M., Ershov A.L., Pazushchan V.A. and Sadakov O.S. (1995) Modelirovanie Reologicheskih Svojstv Polimerov Na Osnove Strukturnoj Modeli Sredy. Izvestiya vuzov. Stroitel'stvo., 11, 48–53. https://doi.org/10.13140/RG.2.2.13241.58723.
  • Astashkin V.M. and Tereshchuk S.V. (1991) Metody Opisaniya Napryazhennogo Sostoyaniya Konstrukcij Iz Sloistyh Plastikov Pri Osesimmetrichnom Peremennom Teplovom Vozdejstvii. CHGTU, CHelyabinsk. https://doi.org/10.13140/RG.2.2.35051.96809.
  • (1972) GOST 9639-71 Listy Iz Neplastificirovannogo Polivinilhlorida (Viniplast Listovoj). Tekhnicheskie Usloviya. Gosudarstvennyj komitet SSSR po upravleniyu kachestvom produkcii i standartam. https://docs.cntd.ru/document/1200020650.
  • Serra-Aguila, A., Puigoriol-Forcada, J.M., Reyes, G. and Menacho, J. (2019) Viscoelastic Models Revisited: Characteristics and Interconversion Formulas for Generalized Kelvin–Voigt and Maxwell Models. Acta Mechanica Sinica/Lixue Xuebao, 35. https://doi.org/10.1007/s10409-019-00895-6.
Еще
Статья научная