Stuckelberg particle in external magnetic field. Nonrelativistic approximation. Exact solutions
Автор: Ovsiyuk E.M., Safronov A.P., Ivashkevich A.V., Semenyuk O.A.
Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc
Статья в выпуске: 5 (57), 2022 года.
Бесплатный доступ
The St¨uckelberg equation for a particle with two spin states, S = 1 and S = 0, is studied in the presence of an external uniform magnetic field. In relativistic case, the particle is described by an 11-component wave function. On the solutions of the equation, the operators of energy, the third projection of the total angular momentum, and the third projection of the linear momentum along the direction of the magnetic field are diagonalized. After separation of variables, we derive a system for 11 functions depending on one variable. We perform the nonrelativistic approximation in this system. For this we apply the known method of deriving nonrelativistic equations from relativistic ones, which is based on projective operators related to the matrix Γ0 of the relativistic equation. The nonrelativistic wave function turns out to be 4-dimensional. We derive the system for 4 functions. It is solved in terms of confluent hypergeometric functions. There arise three series of energy levels with corresponding solutions. This result agrees with that obtained for the relativistic St¨uckelberg equation.
St¨uckelberg particle, non-relativistic approximation, magnetic field, projective operators, exact solutions, bound states
Короткий адрес: https://sciup.org/149141293
IDR: 149141293 | DOI: 10.19110/1994-5655-2022-5-79-88
Текст научной статьи Stuckelberg particle in external magnetic field. Nonrelativistic approximation. Exact solutions
In previous paper [1], we studied the relativistic Stuck-elberg tensor system (see the references in [1]) of11 equations in presence of the external uniform magnetic field. The relativistic particle is described by 11-component wave function, consisted of scalar, vector, and antisymmetric tensor. On so- lutions there are diagonalized operators of energy, the third projection of the total angular momentum, and the third projection of the linear momentum along the magnetic field direction. After separating the variables, the system of 11 radial functions was derived, and it was solved in the terms of con- fluent hypergeometric functions. Three series of the energy levels are found.
In the present paper we study the non-relativistic approximation for this problem. We apply the well-known method (see [2–4]) from the general theory of relativistic wave equations, based on the minimal equation for the matrix Г о (in the model under consideration, it is an 11 x 11-matrix). This minimal equation allows us to introduce three projective operators P + , P - , P 0 and then expand the wave function into three components: Ф = Ф + + Ф _ + Ф о . From the general theory it is known that when obtaining the nonrelativistic approximation the components Ф _ and Ф о should be considered as small, and Ф + — as large ones. Only the component Ф + enters the nonrelativistic equation. The nonrelativistic wave function turns out to be 4-dimensional. We derive the radial system for 4 functions. It is solved in terms of confluent hypergeometric functions. There arise three series of energy levels with corresponding solutions. This result agrees with that obtained for relativistic Stuckelberg equation.
1. Nonrelativistic approximation and projective operators
We start with the matrix Г о of the basic Stuckelberg equa-
P о = 1+r 0 , P i = P + =2 i Г( i Г + 1) ,
P 2 = P _ = 2 i Г( i Г - 1) (2)
with the properties
P = P о , P + = P + , P _ = P _ ,
P о + P + + P _ = I.
In accordance with this, the complete wave function may be decomposed into the sum of three parts
Ф = Ф + + Ф _ + Ф о ,
Ф + = P + Ф , Ф _ = P _ Ф , Ф о = P о Ф . (3)
It is known from the general theory that in nonrelativistic approximation the component Ф + should be considered asa big one, whereas the components Ф - , Ф о — as small ones. We readily find their explicit structure:
Ф + = 2 ( h - i Ф о ,i ( H - i Ф о ) , Ф 1 - iE 1 , Ф 2 - iE 2 ,
Ф з -iE з ,i (Ф 1 -iE i ) ,i (Ф 2 -iE 2 ) ,i (Ф 3 -iE 3 ) , 0 , 0 , 0) t =
= ( L о , iL о , L 1 , L 2 , L 3 , iL 1 ,iL 2 ,iL 3 , 0 , 0 , 0) t ,
Ф _ = 2 ( h + i Ф о , -i ( H + i Ф о ) , Ф 1 + iE 1 , Ф 2 + iE 2 ,
Ф 3 + iE 3 , -i (Ф 1 + iE 1 ) , -i (Ф 2 + iE 2 ) ,
-
-i (Ф 3 + iE 3 ) , 0 , 0 , 0) t =
= ( S о , -iS о , S 1 , S 2 , S 3 , -iS 1 , -iS 2 , -iS 3 , 0 , 0 , 0) t , Ф о = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , B 1 , B 2 , B 3 ) t , (4)
where t stands for transpose. We have introduced special notations for big and small functions.
Because when solving the relativistic problem [1], we used the cyclic basis, now we also should transform big and small component to this basis. Because all blocks of the matrix Г о preserve their form in cyclic basis,
Д о = (1 , 0 , 0 , 0) t , -G о = ( - 1 , 0 , 0 , 0) ,
/ 0 0 0 0 00
к о - | -1 0 0 0 00
K = I 0 -1 0 0 00
\ 0 0 -1 0 00/
p 3 = 1 + г о ,
_____ I _____ _____ _____ I _____ _____
P + = 2 i Г( i Г + 1) , P _ = 2 i Г( i Г - 1) .
The formulas (4) may be written in more convenient variables as follows:
Ф + — 2 ( h - ih о , i ( h - ih о ) , h 1 - iE 1 , h 2 - iE 2 , h 3 -iE 3 , i ( h 1 -iE 1 ) , i ( h 2 -iE 2 ) , i ( h 3 -iE 3 ) , 0 , 0 , 0) t = = ( L о , iL о , L 1 , L 2 , L 3 , iL 1 , iL 2 , iL 3 , 0 , 0 , 0) t , Ф _ = 2 hh + ih о , -i ( h + ih о ) ,h 1 + iE 1 ,h 2 + iE 2 , h 3 + iE 3 , -i ( h 1 + iE 1 ) , -i ( h 2 + iE 2 ) ,
-
-i ( h 3 + iE 3 ) , 0 , 0 , 0) t = = ( S о , -iS о , S 1 , S 2 , S 3 , -iS 1 , -iS 2 , -iS 3 , 0 , 0 , 0) t ,
Ф о = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , B 1 , B 2 , B 3 ) t . (5)
Hence we can derive inverse expressions for initial variables through big and small components:
h = 2(L0 + S0), h0 = i2(L0 - S0), hi = 2(Li + Si), Ei = i2(Li - Si), (6)
i = 1 , 2 , 3 .
Now we turn to relativistic system of equations (see in [1]), collecting them in 4 pairs and one triple:
— ieh 0 — ikh 2 +-- h’h-— —
( Br 2 + 2 m — 2) h
2X 2 r
-
Eliminating the small components B 1 , B 2 , B 3 with the help of three last equations we get
-iϵh 0 |
Br 2 + 2 m - 2 7 2 r |
2- h 1 |
Br 2 + 2 m + 2 ikh2 h g + 272 r |
+ |
1 |
dh 1 1 dh 3 |
|
72 |
dr 72 dr ц, |
||
- iϵh |
- ikE 2 + 72 |
dE 1 dr |
Br 2 + 2 m - 2 - E 1 - 272 r |
1 dE 3 |
Br 2 + 2 m + 2 |
||
7 2 dr |
272 r °'"” |

( Br 2 + 2 m + 2) 2 72 r
h 3 = —^h,
( Br 2 + 2 m ) ц i.pE — ( ’— h + 272 r
-
ieh — ikEo + ^E ‘
72 1
( Br 2 + 2 m — 2)
-E 2X 2 r
+
—B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m — 1) 2 8 r 2
h 1 +

( Br 2 + 2 m + 2) 2 7 2 r
E 3 = цh 0 ;
( Br 2 + 2 m ) ik h
2 7 2 r 2
1 , m + Br 2 / 2 1 ,
--h^-- r- h + -Bl +
72 72 r 72 2
( Br 2 + 2 m )
+ -------- -B 2 — ikB 3 + ieE 1 = цh 1 ,
2 2 r
+ 1 + ( Br 2 + 2 m ) — ie = ^e ;
72 0 272 r
+
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m12
8 r 2
— 4
h 3 -
ikh + ieE 2
-
7 B ‘
72 1
-
( Br 2 + 2 m + 2)
4= h ‘
-
— B ‘ +
72 3
272 r
( Br 2 +2 m — 2) 2 7 2 r
—ikh 0 — ieh 2 = цE 2 ;
m + Br 2
7 2 r
/ 2
h + ' B ‘ 72 2
-
B 1
-
B 3 = ^h 2 ,
ц dh 1 dh 1 ik dh 2 72 dr 2 r dr 72 dr
+ Br 2 + 2 m + 1 dh 3 + 1 d 2 h 1 + 1 d 2 h 3 2 h
2 r dr 2 dr 2 2 dr 2 Ц 1
( Br 2 + 2 m ) Ц . Ц dh 0 2
--—=---h 0 — i^h 1 + — — = Ц E 1 ;
2 2 r 2 dr
(Br2 + 2m — 2)ik ieuE 2 + ikuh--—h
272 r
( Br 2 + 2 m ) 2 ( Br 2 +2 m + 2) ik
4r2 2 272r ik dh 1 + 1 dh2 ik dh3 + d2 h22
72 dr r dr 72 dr dr 2 Ц 2
—ikцh 0 — ieцh 2 = ц 2 E 2 ;
-
( Br 2 + 2 m )
B 2 + ikB 1 + ieE 3 = ^h 3 ,
272 r
-
-
-
+
7 12 h |
‘ Br 2 + 2 m 0 + 2 7 2 r h 0 ieh 3 = |
: цЕ 3 ; |
7 12 h |
Br 2 + 2 m 2 + r- hs + ikha = 2 272 r |
µB 1 , |
ikh 1 |
_ 1 h — Br 2 + 2 m h = 72 2 272 r |
µB 3 , |
h ′ 1 - |
Br 2 + 2 m - 2 h 1 + 272 r 1 h Br 2 + 2 m + 2 7 2 3 2 7 2 r |
h 3 = цB 2 |
.
■ (Br2 + 2m)Ц K , ieцEз------h+
272 r
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m 2
+ 8 r 2
( Br 2 + 2 m ) ik h
2 7 2 r 2
4 h 1 +
-B 2 r 4 + ( - 8 k 2 - 4 Bm ) r 2 - 4( m + 1) 2
+-------!sr^5h 3+ ц dh Br2 + 2m — 1 dh 1
72 dr 2 r dr
ik dh 2
7 2 dr
! 1 dh 3 ! 1 d 2 h 1 + 2 r 17 + 2 " dr 2"
1 d 2 h 3
+ 2 dr1 2
= ц 2 h 3 ,
( Br 2 + 2 m ) 1 . 1 dh 0 2
—= h 0 — ie^h 3 7= — 1 E 3 .
2 2 r 2 dr
Let us take into account the formulas (2), this results in pair I
Br 2 + 2 m — 2
e ( L 0 — S 0 )2 — 2 r ----( L 1 + S i ) —
Br 2 + 2 m + 2
—ik ( L 2 + S 2)------- ( L 3 + S 3 ) +
2 2 r
+ ik d ( L 1 + S 1 ) + 1 d ( L 2 + S 2 )
22 dr r dr
ik d ( L 3 + S 3 )
—2 dr
+ d 2 ( Ldr + S 2 ) — 1 2 ( L 2 + S 2 ) ■
—ik1 ( L 0 — S 0 ) — e1 ( L 2 + S 2 ) — 1 2 ( L 2 — S 2 );
+
pair IV
—ец ( L 3 — S 3 ) — ( Br 2 - J m ) 1 ( L 0 + S 0 ) +
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m 2 — 4
+------- ^r^--------- ( L 1 + S 1 ) +
( Br 2 + 2 m ) ik
+ 2 7 2 r (L 2 + S 2 )+
—B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m + 1) 2
+-------'------8 r^ ( L 3 + S 3 )+
1 d ( L 0 + S 0 ) Br 2 + 2 m — 1 d ( L 1 + S 1 )
22 dr 2 r dr
-
1 d ( L 1 + S 1 ) 1 d ( L 3 + S 3 )
2 dr
2 dr
1 ( L ( L 0 + S 0 ) ,
—e ( L 0 + S , ) — ik ( L 2 — S 2 ) + — d ( L 1 S 1 )
2 2 dr
-
Br 2 + 2 m — 2
2 V2 r (L 1 — S 1 )
-
-
-
1 d ( L 3 — S 3 )
/2 dr
-
Br 2 + 2 m + 2
—2 ^ 2 r —( L 3 — S 3 )— 1 ( L 0 — S 0 );
pair II
—e^ ( L 1 — S 1 ) — (-B—m1 ( L 0 + S 0 )+
—B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m — 1) 2
+----------'--------8-------'------- ( L 1 + S 1 ) +
( Br 2 + 2 m ) ik
+ 2 — 2 r ( L 2 + S 2 )+
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 — 4
+ 8 r 2 ( L 3 + S 3 ) —
_ 1 d ( L 0 + S 0 ) + I d ( L 1 + S 1 ) +
22 dr 2 r dr
+ ik d ( L 2 + S 2 ) + Br 2 + 2 m + 1 d ( L 3 + S 3 ) +
22 dr 2 r dr
ik d ( L 2 + S 2 ) + 1 d ( L 3 + S 3 ) +
22 dr 2 r dr
+1 d 2 ( Lx + S 1 ) + 1 d 2 ( L3 + S 3 )
— 1 2 ( L 3 + S 3 ) ,
( Br 2 + 2 m ) 1 2 -2 r
( L 0 — S 0 )
— e1 ( L 3 + S 3 ) —
1 d ( L 0 — S 0 )
—2 dr
— 1 2 ( L 3 — S 3 ) •
1 d 2 ( L 1 + S 1 )1 d 2 ( L 3 + S 3 ) 2(T _
+ 2---- dr 2----+ 2---- dr 2---- = 1 ( L 1 + S 1 ) ’
( Br 2 + 2 m ) 1 A
2 — 2 r ( L 0 — S 0 ) — e1 ( L 1 + S 1 )+
1 d ( L 0 — S , )
+ —---dr— — 1 ( L 1 — S 1 )1
Within each pair, let us sum and subtract equations, this results in:
pair I
Br 2 + 2 m — 2 Br 2 + 2 m + 2
7= L 3 + 2 ikL 2 +--7= L 3 —
V2 r 2r r
— — dL 1 + —2 dL 3 +2 eS 0 — 2 1S 0 , dr dr
pair III
— e1 ( L 2 — S 2 ) + ik1 ( L 0 + S 0 ) —
-
( Br 2 + 2 m — 2) ik 2 — 2 r
( L 1 + S 1 ) —
-Br 2 - 2 m + 2
2 eL 0 +------------- S 1 —
2 r
-
( Br 2 + 2 m ) 2
4 r 2 ( L 2 + S 2 )
- 2 ikS 2 -
Br 2 + 2 m + 2
— 2 r
S 3 +
( Br 2 + 2 m + 2) ik
------ -2 ------ (L 3 + S 3 ) +
+ — 2 dS ! —2-2 dS 3 — — 2 1L 0 ; dr dr
( Br 2 + 2 m ) ц
2X 2 r
( L о — S o ) — e^ ( L 1 + S 1 )+
+ (LT1 — dS 0) — ец ( L 1 — S 1 ) —
2 dr dr
-
( Br 2 + 2 m ) ц
2X2 r
( L 0 + S 0 ) +
—ец ( L 2 — S 2 ) + ikЦ ( L 0 — S 0 )
-
-
-
( Br 2 + 2 m — 2) ik
-----2 V 2 r-----(L 1 + S 1 ) —
-
( Br 2 + 2 m )
4 r 2
( L 2 + S 2 ) —
( Br 2 + 2 m + 2) ik
-
+
8 r12
'2 — 4( m - 1) 2 ( L 1 + S 1 )+
+
( Br 2 + 2 m ) ik
2V2 r
( L 2 + S 2 ) +
( L 3 + S 3 ) +
2X2 r
+ 7 dLL, + dS ,^ + 2 dr dr |
1 r |
( dL 2 + dS 2 dr dr |
ik dL 3 dS 3 — 7 2 ( "A + "A) |
+ |
d 2 L 2 + dS |
-
-
—ikц ( L 0 — S 0 ) — ец ( L 2 + S 2) — 2 ц 2 L 2 ;
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 — 4
+--------------8 r 2-------------- ( L 3 + S 3 ) —
—ец ( L 2 — S 2 ) + ikц ( L 0 + S 0 ) —
-
dL 0 + dS 0 A + £ (LU + dS 1 A + dr dr / 2 r \ dr dr /
-
( Br 2 + 2 m — 2) ik
2X2 r
( L 1 + S 1 ) —
+ 7 dS + S )+
Br 2 + 2 m + 1 ( dL 3 dS 3
dr dr
2 r
)
+
-
-
( Br 2 + 2 m )
4 r 2
( L 2 + S 2 ) —
( Br 2 + 2 m + 2) ik
-к
d 2 L 1 dr 2
d 2 S 1 1
+ "dA ) + 2 (
d 2 L 3 dr 2
+ d S)—2 ц 2 L 1 ■
2X2 r
( L 3 + S 3 ) +
-
+
—ец ( L 1 — S 1 )
-
( Br 2 + 2 m ) ц
2V2 r
( L 0 + S o )+
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m — 1) 2
8 r 2 ( L 1 + S 1 )+
( Br 2 + 2 m ) ik
+ 2 7 2 r (L 2 + S 2 ) +
+
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 —
8 r 2
( L 3 + S 3 ) —
-
dL 0 + dS 0 A + £ (LU + dS 1 A + dr dr у 2 r \ dr dr /
+. ' L +t)+
Br 2 + 2 m + 1 ( dL 3 dS 3
dr dr
2 r
)
ik (d L 1 dS A 1 (d L 2 dS 2A
+ 7 A+ + Ad^ +
pair IV
-
-
dL 3 + dS 3 A + d 2 L 2 + d 2 S 2 + dr dr dr 2 dr 2
+ ikц ( L 0 — S 0 ) + ец ( L 2 + S 2) — 2 ц 2 S 2 ;
—ец ( L 3 — S 3 )
-
( Br 2 + 2 m ) ц
2X2 r
( L 0 + S 0 ) +
+ B 2 r 4 + 4 B ( m
-
1) r 2 + 4 m 2 —
8 r 2
— ( L 1 + S 1 ) +
-
++
+
( Br 2 + 2 m ) ik
2^2 r
( L 2 + S 2 ) +
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m + 1) 2 8 r 2 ( L 3 + S 3 ) +
d 2 L 1 dr 2
d 2 S 1 1
+ "dU )+2(
d 2 L 3 dr 2
d 2 S 3
+ dr 2 у
-
+ £ (dL ? + S
-
Br 2 + 2 m — 2 r
1 (d L 1 dS A dr dr
-
-
( Br 2 + 2 m ) ц
-
2X2 r
( L 0 — S 0 ) + ец ( L 1 + S 1 )
dL 2 + dS 2 A + £ (LU + dS 3 A + dr dr у 2 r \ dr dr /
-
-
µ dL 0 dS 0 2
7 5 L — 77j — 2 ц S 1;
■:(
d 2 L 1 dr 2
d 2 S 1 1
+ "dA ) + 2 \
d 2 L 3 dr 2
d 2 S 3
+ dr 2 y +
+
( Br 2 + 2 m ) ц
2V2 r
( L 0 — S 0 ) — ец ( L 3 + S 3 ) —
Известия Коми научного центра УрО РАН, серия «Физико-математические науки» № 5 (57), 2022
-
µ dL 0 - dS 0
V2 d dr dr у
= 2 ц 2 L з ,
+
( Br 2 + 2 m ) ik
2 x 2 r
( L 2 + S 2 ) +
—еЦ ( L 3 — S 3 )
-
( Br 2 + 2 m ) ц
2^2 r
( L о + S o )+
+
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 —
8 r r 2
( L 3 + S 3 )+
+
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m12
-
-
+
+
8 r 2
4,
-( L 1 + S 1 )+
+ M ddLo + dS 0 A + £ (dU + dS 1 A + ^ 2 \ dr dr у 2 r \ dr dr у
( Br 2 + 2 m ) ik
2л/2 r
( L 2 + S 2 ) +
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m + 1) 2
8 r 2 ( L 3 + S 3 )+
+
Br 2 + 2 m + 1
2 r
/ dL 3 + dS 3 A + dr dr
+ ^ d^ + dS 0)
-
Br 2 + 2 m — 2 r
1 (dL1 dSЛ dr dr
-
+ 2
( dL + dr 2
d 2 S 1 dr 2
)+2 ( ddL 3 +
d 2 S 3 dr 2
) = 2 M 2 L 1 ,
-
dL 2 + dS 2 A + £ dLU + dS 3 A + dr dr у 2 r \ dr dr у
( M + E ) M ( L 1 —
S 1 ) +
( Br 2 + 2 m ) M
2^2 r
( L 0 + S o )+
-
+2 drr +
d 2 S 1 dr 2
A + 1 d d L La + d 2 S 3 A
У 2 \ dr 2 dr 2 J
-
-
( Br 2 + 2 m ) ц
2^2 r
( L 0 - S 0 ) + ец ( L 3 + S 3 )+
+;A ( di? — dS O =2 ц 2 L 3 •
The parameter µ relates to physical (positive) mass by the formula
ц = — M.
Let us separate the rest energy M by formal change е = M + E , where E is nonrelativisticenergy of the particle. The above equations become simpler:
pair I
Br 2 + 2 m — 2
----------L 1 + 2 ikL 2 + 2 r
Br 2 + 2 m + 2
V2r r
L 3 -
+
B 2 r 4 + ( — 8 k12
— 4 Bm ) r 2 — 4( m —
+
8 r 2
( Br 2 + 2 m ) ik
1) ( L 1 + S 1 )+
+
2X2 r
( L 2 + S 2 ) +
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 —
8 r 2
( L 3 + S 3 )+
-
2 dL 1 + V 2 dL 3 + 2( M + E ) S 0 = dr dr
— 2 MS 0 ,
-Br 2
2( M + E ) L 0 +--
— 2 m + 2
2 r
S 1
-
2 ikS 2 —
Br 2 + 2 m + 2
-
V2r r
√ dS 1
S 3 + 2 2—— dr
-
2 dl r = 2 ML 0 ;
pair II
-
( Br 2 + 2 m ) M
2V2 r
( L 0 — S 0 ) + ( M + E ) M ( L 1 + S 1 ) —
+ M 2 dLLo + dS0
1 dL 1 dS 1
) + 2 r V"dr" + dr? ) +
ik
+—7=
\2
+
/ dL 2 + dS 2 A + dr dr
Br 2 + 2 m + 1
2 r
/ dL 3 + dS 3 A + dr dr
+ 2
( dL + dr 2
d 2 S 1 dr 2
)+2 ( ddL 3 +
d 2 S 3 dr 2
+
( Br 2 + 2 m ) M
2^2 r
( L 0 — S 0 ) — ( M + E ) M ( L 1 + S 1 )+
+ M2 d^ — S) =2 M 2 S 1
pair III
( M + E ) M ( L 2 — S 2 ) — ikM ( L 0 + S 0 )
-
-
-
( Br 2 + 2 m — 2) ik
2^2 r
( Br 2 + 2 m + 2) ik
( L 1 + S 1 ) —
( Br 2 + 2 m )
4 r 2
( L 2 + S 2 ) —
2V2 r
( L 3 + S 3 )+ d + dS i) + 2 dr dr
-
M2 (dL2 — d r) +( M + E ’ M ( L 1
— S 1 )+
+
( Br 2 + 2 m ) M
2X 2 r
( L 0 + S 0 )+
,1 / dL 2 + dS 2 A — ik (Lu + dS 3 A + r \ dr dr у ^ 2 \ dr dr )
d 2 L 2 d 2 S 2
+ , 2 + Я 2 + ikM(L0 — S0) + dr2 dr2
+( M + E ) M ( L 2 + S 2 ) = 2 M 2 L 2 ,
( M + E ) M ( L 2 — S 2 ) — ikM ( L 0 + S 0 ) —
-
+
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m — 1) 2
8 r 2 ( L 1 + S 1 ) +
-
( Br 2 +2 m — 2) ik
2X2 r
( L 1 + S 1 ) —
( Br 2 + 2 m )
4 r 2
( L 2 + S 2 ) —
-
( Br 2 + 2 m + 2) ik
2\ 2 r
( L 3 + ? 3 ) + J dL + d? 1) + 2 dr dr
— M dL 0^ — dr') — 2 M 2 ? 3 ■
""I— r
/ dL 2 + d? 2 A — ik dLU + d? 3 A + \ dr dr ) ^2 \ dr dr )
Let us neglect small components, so we obtain
Br 2 + 2 m
-
pair IV
+ L +
d2S д 2--ikM(L0 — ?0) — dr2
— ( M + E ) M ( L 2 + ? 2 ) - 2 M 2 ? 2 ;
( M + E ) M ( L з - ? з ) +
( Br 2 + 2 m ) M
2V2 r
( L о + ? o )+
+
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m 2 —
8 r1 2
—( L 1 + ? i )+
+
( Br 2 + 2 m ) ik
2V2 r
( L 2 + ? 2 ) +
-
V2 r dL dr
L 1 + 2 ikL 2 +
Br 2 + 2 m + 2
2^ r
L 3
-
-
2 EL 0 +
—■— ) + 2 ? 0 ( M + E ) — — 2 M? 0 , dr
—Br 2 — 2 m + 2
-------7=------ ? 1 — 2 ik? 2 —
2 r
Br 2 + 2 m + 2
-
-
+
V2 r
- 3 ^( d? dS ?)—“
( Br 2 + 2 m ) M
V 2 r
B 2 r 4 + ( — 8 k 2
? 0 + x 2 MdS 0 + dr
— 4 Bm ) r 2 — 4( m —
-
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 —
8 r 2
^ m t1 2 ( L 3 + ? .3 ) —
-
dL 0 + d?^
-
Br 2 + 2 m — 1 2 r
/ L + d? 1 A dr dr
-
+
8 r 2
( Br 2 + 2 m ) ik
+-- 7=----- L 2+
2V2 r
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 —
1) 2
L 1 +
-
-
dL 2 + d? 2 dr dr
1 ( d 2 L 1 + 2 r (i r ^ +
( Br 2 + 2 m ) M
2/2 r
M
+ x 2
( M + E ) M ( L 3
+
-
+
-
+
8 r 2
— L 3 +
) + 1 (d L + d? ) +
) 2 r V dr dr )
1 dL 1 ik dL 2
2 r dr a/2 dr
Br 2 +2 m + 1 dL 3
2 r
dr
+
d 2 S 1 dr 2
)+u
d 2 L 3 dr 2
d 2 S 3
+ dr 2 )
-
1 d 2 L 1 d 2 L
+ 2 d^ d^ MEL 1 -0 ’
( Br 2 + 2 m ) M
( L 0 - ? 0 )+ ( M + E ) M ( L 3 + ? 3 )+
/ dL o — dS ° A -2 m 2 l 3 , dr dr
— ? 3 ) +
( Br 2 + 2 m ) M
2V2 r
( L 0 + S 0 )+
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m 2 —
8 r 2
( L 1 + S 1 )+
+
( Br 2 + 2 m ) ik
2V2 r
( L 2 + S 2 )+
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m + 1) 2
8 r 2 ( L 3 + ? 3 ) —
dL 0 + d? 0 A dr dr
Br 2 + 2 m — 1
-
2 r
/ dL 1 + d? 1 A dr dr
-
V2r r
-
+
-
dL 2 + d? 2 dr dr
+1 + dh +
) 2 r\dr dr )
1 / d 2 L 1 d 2 ? Л 1 / d 2 L 3
+ 2 \" dr 2" + " dr 2"/ + 2 \" dr 2"
( Br 2 + 2 m ) M
2^2 r
+ -
( L 0 — ? 0 ) — ( M + E ) M ( L 3 + ? 3 )
-
L 0 + V 2 Mdr — 2( M + E ) MS 1 +
B 2 r 4 + ( — 8 k 2 — 4 Bm ) r 2 — 4( m —
+
8 r 2
( Br 2 + 2 m ) ik
+--7=----- L 2 +
2V2 r
B 2 r 4 + 4 B ( m + 1) r 2 + 4 m 2 —
1) 2
L 1 +
8 r 2
—L 3 +
1 dL 1 ik dL 2
2 r dr a/2 dr
Br 2 + 2 m + 1 dL 3
2 r
dr
+
+2 dL +1 dL -2 m 2
2 MEL 2 — 2 ikM? 0
-
S 1 ,
( Br 2 + 2 m - 2) ik
-
( Br 2 + 2 m )
4 r1 2
2 L 2
-
2^2 r
( Br 2 + 2 m + 2) ik
2X 2 r
L 1 -
L 3 +
ik dL 1
+ v2 dr
+ 1 dL 2 r dr
-
ik dL 3 d 2 L 2 =
^ 2 dr dr 2 ^’
— 2( M + E ) M? 2 — 2 ikML 0 —
( Br 2 + 2 m - 2) ik
2V2 r
L 1
-
-
( Br 2 + 2 m )
4 r 2
2 L 2
-
( Br 2 +2 m + 2) ik
2V2 r
L 3 +
_
ik dL 1 1 dL 2
-72 dr r dr
-
ik dL
3 +
V2 dr
d 2 L 2 dr 2
= 2 M 2 S 2 ,
( Br 2 + 2 m ) Mc ddS о
----—----S 0 — V 2 M —-— + 2 ML з E + 2 r dr
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m 2
+ 8 r 2
+
( Br 2 + 2 m ) ik
------7=----- L 2 +
2X 2 r
-
L 1 +
+
—B 2 r 4 + ( — 8 k 2
— 4 Bm ) r 2
8 r 2
— 4( m + 1) 2
L 3 -
Br 2 + 2 m — 1 dL 1 ik dL 2
2 r dr 2^ dr
+ 1 dL 3 + 1 d 2 L 1 + 1 d 2 L 3 = 0
2 r dr 2 dr 2 2 dr 2 1
4 2 M^ + ( Br 2 + 2 m ) M L 0 — 2( M + E ) MS 3 + dr 2 r
B 2 r 4 + 4 B ( m — 1) r 2 + 4 m12
+ 8 r 2
_
L 1 +
+
( Br 2 + 2 m ) ik
------7=----- L 2 +
2X2 r
+
-B 2 r 4 + ( - 8 k 2
- 4 Bm ) r 2
8 r 2
— 4( m + 1) 2
L 3 -
Br 2 +2 m - 1 dL 1 ik dL 2 1 dL 3
2 r dr 42 dr 2 r dr
, 1 d 2 L 1 , 1 d 2 S 1 , 1 d 2 L 3 + 2 dr 2 + 2 " dr 2" + 2 dr 2
= 2 M 2 S 3 •
We assume that nonrelativistic energy may be neglected in comparison with rest energy M + E к M . Also from equations (1), (4), (6), (8) we express the small variables S 0 , S 1 , S 2 , S 3 and substitute them in equations (2), (3), (5), (7). In this way, we obtain equations which contain only the big components
(- d a + 1 d- + 2 ME - k2 dr 2 r dr
_
( m - 1) 2
r2
_
B2r2
4 Brn \ L 1 = 0 , L 1 = N 1 f 1 ;
( 77 + 1 d + 2 ME — k 2 dr 2 r dr
_
m2 r2
_
B2r2
4 Bmj L 2 = 0 ,
L 2 = N 2 f 3 ;
( 77 + 17" + 2 ME — k 2 dr 2 r dr
_
( m + 1) 2 r 2
B2r2
4 Bm \ L 3 = 0 , L 3 = N 3 f 2 ;
(ds +
1 d +2 ME - k 2 — r dr
m2 B2r2
”2 Bm I L o + r 2 4
+4 (т
2X2 ddr
m + Br 2
_
r
77) L 1 +
+ 4 dT +
242 к dr
m + Br 2 / 2 + 1 \ --------------- L 3 = 0 •
r
The last equation may be re-written differently
(33 + 1 d +2 ME dr2 r dr
- k 2
9m2
r2
B2r2
Bm L 0 +
+ /- ( N 1 b m - 1 f 1 + N 3 a m +1 f 2 ) = 0 •
It is evident that L 0 = constf 3 , then eq. (7) takes on the form
N 1 b m - 1 f 1 + N 3 a m +1 f 2 = 0 • (8)
There exist differential constraints (see in [1])
bm-1 f1 = C1 f3, am+1 f2 = C2 f3, they permit us to transform the previous relation to the following form (see [1])
N 1 b m - 1 f 1 + N 3 a m +1 f 2 =
= ( N 1 C 1 + N 3 C 2 ) f 3 = 0 ^ N 1 C 1 + N 3 C 2 = 0 •
Thus we have obtained 4 separate equations (only 3 equations are different, their solutions will be found in the next section)
[ 7 7 + 1 T + 2 ME ~ k12 dr 2 r dr
B2r2
- Bm
L 1 = 0 ,
( m — 1) 2 r 2
L 1 = N 1 f 1 ;
[
d2
d^ + 1 d +2 ME dr 2 r dr
k2
m2 r2
N 1 C 1 + N 3 C 2 = 0 .
Recall that (see [1])
C 1 = VX-B, C 2 = V X + b ,
, 1 - (2 a 1 + 1) B + 2 ME - k12
+ 2 B
-
Bm
F 1 = 0
X — 2 BN — 2 ME - k 2 . (9)
with parameters
General solution on the nonrelativistic equation consists of three components (the general multiplier e imϕ e ikz is omitted):
а 1 —
(2 a 1 + 1) B — 2 ME + k 2 + Bm
2 B
■ y 1 = 2 a 1 + 1 .
/1\ /0\
Ф = e -iE 1 t N i I 0 I f i + e - iE 2 t N 3 I ^ I f 2 +
In order to get the bound states a 1 = +|m — 1|, Y1 = m — 1| + 1,
+e-iE3tN2 I 0 I f3 + e—iE3tN0 I 0 I f3(r)• k2 + B(|m - 1| + m + 1) - 2ME
We have 3 different series of energy levels, E 1 , E 2 , E 3 and 3 different wave functions. This result agrees with that obtained in relativistic case.
-
2. Solving the differential equations
The above three equations let us transform to the variable
that polynomial condition а 1 — -n 1 gives
-
E. - F — B ( n. + m- Ui m ii) . (13)
-
1 2 M M \ 1 2
Two other equations lead to similar results. Thus, we get
L 1 — x|m-1 |/2F-x/2F(-n 1, |m - 11 + 1 ,x), k2 B |m - 1| + m + 1
-
E1 - 2M = MV 1+ !----2
L 2 — x m/ 2 F -x/ 2 F ( -n 2 , |m| + 1 , x ) ,
-
k 2 B |m| + m + 1
-
E 2 - 2 M — mV 2 + 2---- )■ (14)
L 3 — x |m +1 1/ 2 F -x/ 2 F ( -n 3 , |m + 1 | + 1 , x ) ,
-
k 2 B |m + 1 | + m + 1
-
E 3 - 2 M — M Г 3 + 2 )•
Discussion
The nonrelativistic wave function for Stuckelberg particle turned out to be 4-dimensional. We have derived the corresponding radial system for 4 functions. It has been solved in terms of confluent hypergeometric functions. There arise three series of energy levels with corresponding solutions. This result agrees with that obtained for the relativistic Stuckelberg equation.
It may be noted that the similar nonrelativistic study for Stuckelberg particle in presence of the external Coulomb field was done in [5]. The energy spectrum was found. Besides, a general Pauli-like equation was derived for this particle in presence of arbitrary electromagnetic field.
Список литературы Stuckelberg particle in external magnetic field. Nonrelativistic approximation. Exact solutions
- Ovsiyuk, E.M. St¨uckelberg particle in external magnetic field, and the method of projective operators / E.M. Ovsiyuk, A.P. Safronov, A.V. Ivashkevich, O.A. Semenyuk // Известия Коми НЦ УрО РАН. - 2022. - № 5 (57). - С. 69-78.
- Богуш, А.А. Нерелятивистский предел в общековариантной теории векторной частицы / А.А. Богуш, В.В. Кисель, Н.Г. Токаревская, В.М. Редьков // Известия НАН Беларуси. Серия физ.-мат. наук. - 2002. - № 2. - С. 61-66.
- Bogush, A.A. Duffin-Kemmer-Petiau formalism reexamined: nonrelativistic approximation for spin 0 and spin 1 particles in the Riemannian space-time / A.A. Bogush, V.V. Kisel, N.G. Tokarevskaya, V.M. Red'kov // Annales de la Fondation Louis de Broglie. - 2007. - Vol. 32. - № 2-3. - P. 355-381.
- Редьков, В.М. Поля частиц в римановом пространстве и группа Лоренца / В.М. Редьков. - Минск: Белорусская наука, 2009. - 486 с.
- Ovsiuyk, E.M. St¨uckelberg particle in the Coulomb field, nonrelativistic approximation, wave functions and spectra / E.M. Ovsiyuk, O.A. Semenyuk, A.V. Ivashkevich, M. Neagu // Nonlinear Phenomena in Complex Systems. - 2022. - Vol. 25. - № 3. - P. 352-367.