Stuckelberg particle in external magnetic field. The method of projective operators

Автор: Ovsiyuk E.M., Safronov A.P., Ivashkevich A.V., Semenyuk O.A.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Статья в выпуске: 5 (57), 2022 года.

Бесплатный доступ

We study the St¨uckelberg equation for a relativistic particle with two spin states S = 1 and S = 0 in the presence of an external uniform magnetic field. The particle is described by an 11-component wave function consisting of a scalar, a vector, and an antisymmetric tensor. On the solutions of the equation, the operators of energy, the third projection of the total angular momentum, and the third projection of the linear momentum along the direction of the magnetic field are diagonalized. After separation of variables, a system for 11 radial functions is obtained. Its solution is based on the use of the Fedorov-Gronsky method, in which all 11 radial functions are expressed in terms of three main functions. Exact solutions with cylindrical symmetry are constructed. Three series of energy levels are found.

Еще

Stückelberg particle, magnetic field, projective operators, fedorov- gronskiy method, exact solutions, bound states

Короткий адрес: https://sciup.org/149141411

IDR: 149141411   |   DOI: 10.19110/1994-5655-2022-5-69-78

Список литературы Stuckelberg particle in external magnetic field. The method of projective operators

  • Stückelberg, E.C.G. Die Wechselwirkungskräfte in der Elektrodynamik und in der Feldtheorie der Kernkräfte (Teil II und III) / E.C.G. Stückelberg // Helv. Phys. Acta. – 1938. – Vol. 11. – P. 299–312, 312–328.
  • Red’kov, V.M. Ob uravneniyakh dlya polya Diraka–Kelera i bozonov s raznymi vnutrennimi chetnostyami v rimanovom prostranstve [On equations for the Dirac–Kähler field and bosons with different parities in the Riemannian space] / V.M. Red’kov // Vestsі NAN Belarusі. Ser. fіz.- matem. navuk [Proc. NAS of Belarus. Phys. and mathem. ser.]. – 2000. – Vol. 1. – P. 90–95.
  • Ovsiyuk, E. Some consequences from the theory: on intrinsic spinor sub-structure of the different boson wave functions / E. Ovsiyuk, O. Veko, V. Red’kov // Nonlinear Phenomena in Complex Systems. – 2013. – Vol. 16. – P. 13–23.
  • Ishkhanyan, A.M. Chastica Diraka–Kelera v sfericheskom prostranstve Rimana: bozonnaya interpretaciya, tochnye resheniya [The Dirac–Kähler field in spherical Riemann space: boson interpretation, exact solutions] / A.M. Ishkhanyan, O. Florea, E.M. Ovsiyuk,V.M. Red’kov // Vestnik Brestskogo univer. Ser. 4. Fizika, matematika [Proc. of Brest University. Ser. 4. Physics, Mathematics]. – 2015. – Vol. 1. – P. 15–26.
  • Ovsiyuk, E.M. Chastica Diraka–Kelera v prostranstve Lobachevskogo, nerelyativistskoe priblizhenie, bozonnaya interpretaciya [The Dirac–Kähler field in Lobachevsky space, nonrelativistic approximation, exact solutions] / E.M. Ovsiyuk, A.N. Red’ko, V.M. Red’kov // Vestsі NAN Belarusі. Ser. fіz.–matem. navuk [Proc. NAS of Belarus. Phys. and mathem. ser.]. – 2015. – Vol. 4. – P. 61–70.
  • Ishkhanyan, A.M. Dirac–Kähler particle in Riemann spherical space: boson interpretation / A.M. Ishkhanyan, O. Florea, E.M. Ovsiyuk, V.M. Red’kov // Canad. J. Phys. – 2015. – Vol. 93. – P. 1427–1433.
  • Chichurin, A.V. Dirac–Kähler particle in Riemann spherical space: analytical and numerical study, visualization / A.V. Chichurin, E.M. Ovsiyuk, V.M. Red’kov // Studia i Materialy. – 2015. – Vol. 1. – № 9. – P. 41–54.
  • Kazmerchuk, К.V. Nonrelativistic description of the Dirac–Kähler particle on the background of curved space-time / К.V. Kazmerchuk, V.V. Kisel, E.M. Ovsiyuk, V.M. Red’kov, O.V. Veko // Chapter in: Relativity, Gravitation, Cosmology: Foundations. – New York: Nova Science Publishers, Inc., 2015. – P. 59–74.
  • Veko, O.V. Lounesto classification and the theory of the Dirac–Kähler field on intrinsic spinor sub-structure of the different boson wave functions / O.V. Veko, E.M. Ovsiyuk, V.M. Red’kov // Chapter in: Relativity, Gravitation, Cosmology: Foundations. – New York: Nova Science Publishers, Inc., 2015. – P. 75–88.
  • Red’kov, V.M. Polya chastic v rimanovom prostranstve i gruppa Lorenca [Fields in Riemannian space and the Lorentz group] / V.M. Red’kov. – Minsk: Belorusskaya nauka [Belarusian Science], 2009. – 486 p.
  • Red’kov, V.M. Tetradnyj formalizm, sfericheskaya simmetriya i bazis Shredingera [Tetrad formalism, spherical symmetry and Schrödinger basis] / V.M. Red’kov. – Minsk: Belorusskaya nauka [Belarusian Science], 2011. – 339 p.
  • Ovsiyuk, E.M. Maxwell electrodynamics and boson fields in spaces of constant curvature / E.M. Ovsiyuk, V.V. Kisel, V.M. Red’kov. – New York: Nova Science Publishers Inc., 2014. – 486 p.
  • Pletukhov, V.A. Relyativistskie volnovye uravneniya i vnutrennie stepeni svobody [Relativistic wave equations and intrinsic degrees of freedom] / V.A. Pletukhov, V.M. Red’kov, V.I. Strazhev. – Minsk: Belorusskaya nauka [Belarusian Science], 2015. – 327 p.
  • Kisel, V.V. Elementary particles with internal structure in external fields. Vol. I, II / V.V. Kisel, E.M. Ovsiyuk, O.V. Veko, Y.A. Voynova, V. Balan [et al.]. – New York: Nova Science Publishers Inc., 2018.– 418, 414 pp.
  • Bogush, A.A. Nerelyativistskij predel v obshchekovariantnoj teorii vektornoj chasticy [Nonrelativistic approximation in general covariant theory of the vector particle] / A.A. Bogush, V.V. Kisel, N.G. Tokarevskaya, V.M. Red’kov // Vestsі NAN Belarusі. Ser. fіz.-matem. navuk [Proc. NAS of Belarus. Phys. and mathem. ser.]. – 2002. – Vol. 2. – P. 61–66.
  • Kisel, V.V. O svyazannykh sostoyaniyakh chastitsy so spinom 1 vo vneshnem kulonovskom pole [On bound states of a particle with the spin 1 in external Coulomb field] / V.V. Kisel, N.G. Tokarevskaya, V.M. Red’kov // Vestsi Belorusskogo derzh. ped. universitetа [Proc. of Belorussian State Pedag. Univer.]. – 2003. – Vol. 2. – P. 128–131.
  • Bogush, A.A. Duffin–Kemmer–Petiau formalism reexamined: nonrelativistic approximation for spin 0 and spin 1 particles in the Riemannian space-time / A.A. Bogush, V.V. Kisel, N.G. Tokarevskaya, V.M. Red’kov // Annales de la Fondation Louis de Broglie. – 2007. – Vol. 32. – № 2–3. – P. 355–381.
  • Kisel, V.V. On the wave functions and energy spectrum for a spin 1 particle in external Coulomb field /V.V. Kisel, E.M. Ovsiuyk, V.M. Red’kov // Nonlinear Phenomena in Complex Systems. – 2010. – Vol. 13. – P. 352–367.
  • Kisel, V.V. Volnovye funkcii i spektr energii dlya chasticy so spinom 1 vo vneshnem kulonovskom pole [Wave functions and energy spectrum for a spin 1 particle in external Coulomb field] / V.V. Kisel, V.M. Red’kov, E.M. Ovsiyuk // Doklady NAN Belarusi [Doklady NAS of Belarus]. – 2011. – Vol. 55. – № 1. – P. 50–55.
  • Ovsiyuk, E.M. On describing bound states for a spin 1 particle in the external Coulomb field / E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, A.D. Koral’kov, V.V. Kisel [et al.] // Proceedings of Balkan Society of Geometers. – 2018. – Vol. 25. – P. 59–78.
  • Gronskiy, V.K. Magnitnyye svoystva chastitsy so spinom 3/2 [Magnetic properties of a particle with spin 3/2] / V.K. Gronskiy, F.I. Fedorov // Doklady NAN Belarusi [Doklady NAS of Belarus]. – 1960. – Vol. 4. – № 7. – P. 278–283.
Еще
Статья научная