Study of artificial intelligence models for big data analysis in project management
Автор: Pshichenko D.
Журнал: Международный журнал гуманитарных и естественных наук @intjournal
Рубрика: Экономические науки
Статья в выпуске: 8-3 (95), 2024 года.
Бесплатный доступ
This study explores the application of artificial intelligence (AI) and machine learning (ML) models for big data analysis in project management. By leveraging specific ML algorithms such as decision trees, random forests, support vector machines, neural networks, k-means clustering, gradient boosting, and natural language processing, project management practices are significantly enhanced. These technologies improve decision-making, resource allocation, and risk management. The implementation of these models involves addressing technical challenges, ensuring data quality, and adhering to ethical and privacy standards. This research provides an understanding of the transformative potential of AI and ML in optimizing project management.
Artificial intelligence (ai), machine learning (ml), big data, project management, decision trees, neural networks, risk management
Короткий адрес: https://sciup.org/170206385
IDR: 170206385 | DOI: 10.24412/2500-1000-2024-8-3-180-185
Список литературы Study of artificial intelligence models for big data analysis in project management
- Artificial intelligence (AI) market size worldwide from 2020 to 2030 / Statista. – URL: https://www.statista.com/forecasts/1474143/global-ai-market-size (date of application: 15.07.2024).
- Nguyen D.K., Sermpinis G., Stasinakis C. Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology // European Financial Management. – 2023. – Vol. 29, № 2. – P. 517-548.
- Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 / Statista. – URL: https://www.statista.com/statistics/871513/worldwide-data-created/ (date of application: 20.07.2024).
- Bobunov A.Yu. Optimization of performance and reliability of financial applications through innovative testing methods // Innovacionnaya nauka. – 2024. – № 6-1. – P. 74-79.
- Dubey R., Bryde D. J., Graham G., Foropon C., Kumari S., Gupta O. The role of alliance management, big data analytics and information visibility on new-product development capability // Annals of Operations Research. – 2024. – P. 1-25.
- Ogarkov A. Application of big data analytics to improve business customer service // Innovacionnaya nauka. – 2024. – № 7-1. – P. 61-65.
- Costa V. G., Pedreira C. E. Recent advances in decision trees: An updated survey // Artificial Intelligence Review. – 2023. – Vol. 56, № 5. – P. 4765-4800.
- Ikotun A.M., Ezugwu A.E., Abualigah L., Abuhaija B., Heming J. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data // Information Sciences. – 2023. – Vol. 622. – P. 178-210.
- Korostin O. Application of NLP technologies for data extraction from text messages in maritime logistics // The scientific heritage. – 2024. – № 141. – P. 42-45.
- Odejide O.A., Edunjobi T.E. AI in project management: exploring theoretical models for decision-making and risk management // Engineering Science & Technology Journal. – 2024. – Vol. 5, № 3. – P. 1072-1085.
- Vial G., Cameron A. F., Giannelia T., Jiang J. Managing artificial intelligence projects: Key insights from an AI consulting firm // Information Systems Journal. – 2023. – Vol. 33, № 3. – P. 669-691.
- Mozharovskii E. Evaluating retrieval-augmented generation (RAG) techniques in enhancing LMS for coding tasks // Universum: tekhnicheskie nauki: lectron. nauchn. zhurn. – 2024. – № 6 (123). – URL: https://7universum.com/ru/tech/archive/item/17729.
- Bukhtueva I. The role of AI in financial risk management and fraud detection // ISJ Theoretical & Applied Science. – 2024. – № 07(135). – P. 65-69.