Study of Context Modelling Criteria in Information Retrieval

Автор: Melyara. Mezzi, Nadjia. Benblidia

Журнал: International Journal of Information Technology and Computer Science(IJITCS) @ijitcs

Статья в выпуске: 3 Vol. 9, 2017 года.

Бесплатный доступ

Whereas the majority of works and research about context-awareness in ubiquitous computing provide context models that make use of context features in a particular application, one of the main challenges these last years has been to come out with prospective standardization of context models. As for Information Retrieval, the lack of consensual Context Models represents the biggest issue. In this paper, we investigate the importance of good context modelling to overcome some of the issues surrounding a search task. Thus, after identifying those issues and listing and categorizing the modelling requirements, the objective of our research is to find correlations between the appreciations of context quality criteria taking into account the user dimension. Likewise, the results of a previous survey about search habits have been used such that many socio-demographic categories were considered and the Kendall's W evaluation performed together with the Friedman test provided very interesting results that encourage the feasibility of building large scale context models.

Еще

Contextual Information Retrieval, Context-Awareness, Search issues, Context-modelling, Kendall's W test

Короткий адрес: https://sciup.org/15012626

IDR: 15012626

Список литературы Study of Context Modelling Criteria in Information Retrieval

  • Contextual Information Retrieval, Context-Awareness, Search issues, Context-modelling, Kendall's W test
  • Agbele, K., Adesina, A., Nureni, A., & Abidoye, P. (2012). Context-aware stemming algorithm for semantically related root words. African Journal of Computing & ICT, 4(5), 33-42.
  • Saracevic, T. The notion of context in "Information Interaction in Context". In N. ACM New York, USA (Ed.), The Information Interaction in Context Symposium, Rutgers University in New Brunswick, NJ, USA, 18-21 August, 2010 2010 (Vol. 44, pp. 1, Vol. 2). doi:10.1145/1840784.1840786.
  • Mezzi, M., & Benblidia, N. (2015). Aspects of Context in Daily Search Activities - Survey about Nowadays Search Habits. In International Conference on Web Information Systems and Technologies, Lisbon, Portugal, 20-22 June, 2015. 2015 (pp. 627-634): SCITEPRESS (Science and Technology Publications, Lda.). doi:10.5220/0005480706270634.
  • Lombardi, S. (2014). Context-awareness and context modeling. Paper presented at the Ubiquitous Computing Seminar FS2014, The Distributed Systems Group at the ETH (Swiss Federal Institute of Technology) Zurich, Swiss., 20 May, 2014.
  • Bouidghaghen, O., Tamine-Lechani, L., & Boughanem, M. Dynamically Personalizing Search Results for Mobile Users. In 8th International Conference, FQAS 2009., Roskilde, Denmark, October 26-28, 2009 2009 (Vol. 5822, pp. 99-110, Lecture Notes in Computer Science): Springer Berlin Heidelberg. doi:10.1007/978-3-642-04957-6_9.
  • Tian, J. (2010). Rich mobile context computing. Paper presented at the The 2nd Workshop on Mobile Information Retrieval for Future (MIRF), Daejeon, Korea, November 26, 2010
  • Mcheick, H. Modeling Context Aware Features for Pervasive Computing. In The 5th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN-2014), Nova Scotia, Canada, 22-25 Septemer, 2015. 2014 (Vol. 37, pp. 135 — 142): Elsevier B.V. doi: 10.1016/j.procs.2014.08.022.
  • Gross, T., & Klemke, R. Context Modelling for Information Retrieval - Requirements and Approaches. In P. Isaías (Ed.), IADIS International Conference WWW/Internet ICWI 2002, Lisbon, Portugal, 13-15 November 2002 2002(pp. 247–254)
  • Han, J., Wang, M., & Wang, J. Research of cognitive and user-oriented information retrieval. In 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT 2010), Chengdu, China, 09 Jul - 11 Jul 2010 2010 (pp. 416-420): Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ICCSIT.2010.5564045.
  • Jaimes, A. (2012). What Can Search Tell Us? A Human-Centered Perspective. Paper presented at the International Workshop on Search Computing, Brussels, 26 Nov 2012.
  • Ryu, J., Jung, Y., Kim, K.-m., & Myaeng, S. Automatic Extraction of Human Activity Knowledge from Method-Describing Web Articles. In 1st Workshop on Automated Knowledge Base Construction, Grenoble, France, 2010 (pp. 16-23)
  • Zhang, Y., Zhang, N., Tang, J., Rao, J., & Tang, W. MQuery: Fast Graph Query via Semantic Indexing for Mobile Context. In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Toronto, ON Canada, 31 August - 3 September 2010 2010 (Vol. 1, pp. 508 - 515): IEEE. doi:10.1109/WI-IAT.2010.137.
  • Nyiri, K. (2006). The mobile telephone as a return to unalienated communication. Knowledge, Technology & Policy, 19(1), 54-61, doi:10.1007/s12130-006-1015-5.
  • Mirceska, A., Trajkovik, V., & Ristevska, K. Location based systems for retrieval using mobile devices. In M. G. a. P. Mitrevski (Ed.), Information and Communication Technologies (ICT Innovations 2010), Macedonia, 12-15 September 2010 2010 (Vol. 83, pp. 261-269): Communications in Computer and Information Science
  • Morgan, R. (2012). Relevance for the masses. Paper presented at the search solutions 2012 - Innovations in Web & Enterprise Search, London, 28 November 2012.
  • Kapor, M. (1993, August 1993). Where is the digital highway really heading? The case for a Jeffersonian In-formation Policy. Wired Magazine, pp. 1-13.
  • Alikilic, O. A. (2008). When people are the message. Public participation in new media: User generated content. Journal of Yasar University, 3(10), 1345-1365.
  • Broder, A. (2002). A taxonomy of web search [Newsletter]. SIGIR FORUM, 36(2), 3-10, doi:10.1145/792550.792552.
  • Banu, W. A., Khader, A., & Shriram, R. (2011). Mobile Information Retrieval : A Survey. European Journal of Scientific Research, 55(3), 394–400.
  • Kamvar, M., & Baluja, S. A large scale study of wireless search behavior: Google mobile search. In the SIGCHI Conference on Human Factors in Computing Systems, Montréal, Québec, Canada, 22-27 April 2006 2006 (pp. 701-709): ACM New York, NY, USA. doi:10.1145/1124772.1124877.
  • Neisse, R., Wegdam, M., & Sinderen, M. v. Trustworthiness and Quality of Context Information. In The 9th International Conference for Young Computer Scientists ICYCS 2008, Zhang Jia Jie, China, 18-21 November 2008 2008 (pp. 1925-1931).
  • Gicquel, P.-Y. Vers une modélisation des situations d’apprentissage ubiquitaire. In Actes des troisièmes Rencontres Jeunes Chercheurs en EIAH, Lyon, France, July 2010 2010 (pp. 93-98).
  • Saracevic, T. The stratified model of information retrieval interaction: Extension and applications. In the American Society for Information Science Annual Meeting ASIS, Washington, DC, 1-6 November 1997 1997 (Vol. 34, pp. 313-327)
  • Poveda-Villalon, M., Suarez-Figueroa, M. C., Garcia-Castro, R., & Gomez-Perez, A. A context ontology for mobile environments. In Workshop on Context, Information and Ontologies - CIAO 2010, Lisbon, Portugal, 11 October 2010 2010 (Vol. 626)
  • Pasi, G. (2010). Issues in Personalizing Information Retrieval IEEE Intelligent Informatics Bulletin (Vol. 11, pp. 3-7): Technical Committee on Intelligent Informatics (TCII) of the IEEE Computer Society.
  • Strang, T., & Linnhoff-Popien, C. A Context Modeling Survey. In Workshop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004, Nottingham/England, 7 September 2004 2004
  • Go, Y.-C., & Sohn, J.-C. Context modeling for intelligent robot services using rule and ontology. In The 7th International Conference on Advanced Communication Technology ICACT 2005., Phoenix Park, Dublin, Ireland, 21-23 February 2005 2005 (Vol. 2, pp. 813 - 816): IEEE. doi:10.1109/ICACT.2005.246076.
  • Lee, S. w., Lyu, C. H., Ahn, K. S., Han, S. W., & Youn, H. Y. Context Modeling Reflecting the Perspectives of Constituent Agents in Distributed Reasoning. In IEEE/ACM Int'l Conference on Green Computing and Communications (GreenCom) & Int'l Conference on Cyber, Physical and Social Computing (CPSCom), Hangzhou, China, 18-20 December 2010 (pp. 584 - 591): IEEE. doi:10.1109/GreenCom-CPSCom.2010.50.
  • Kalyan, A., Gopalan, S., & V, S. Hybrid context model based on multilevel situation theory and ontology for contact centers. In The Third IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom 2005), Kauai - Hawaii, 8-12 March 2005 2005 (pp. 3-7): IEEE. doi:10.1109/PERCOMW.2005.40.
  • Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (2001). Towards a Better Understanding of Context and Context-Awareness. In Handheld and Ubiquitous Computing - First International Symposium, HUC’99 Karlsruhe, Germany, 27–29 September, 1999 Proceedings (Vol. 1707, pp. 304-307, Lecture Notes in Computer Science): Springer Berlin Heidelberg.
  • Wu, Y.-L., Liu, A., Chang, W.-C., Li, P.-S., Chu, H.-L., Lee, C.-H. L., et al. Using context models in defining intelligent environment information. In 9th World Congress on Intelligent Control and Automation (WCICA 2011), Taipei, Taiwan, 21-25 June 2011 2011 (pp. 1075-1080): IEEE. doi:10.1109/WCICA.2011.5970681.
  • Wojciechowski, M., & Wiedeler, M. Model-based Development of Context-Aware Applications Using the MILEO Context Server. In IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops 2012), Lugano, Switzerland, 19-23 March 2012 2012 (pp. 613 - 618): IEEE. doi:10.1109/PerComW.2012.6197588.
  • Khattak, A., Akbar, N., Aazam, M., Ali, T., Khan, A., Jeon, S., et al. (2014). Context Representation and Fusion: Advancements and Opportunities. Sensors, 14(6), 9628-9668, doi: 10.3390/s140609628.
  • Bhargava, P., Krishnamoorthy, S., & Agrawala, A. An ontological context model for representing a situation and the design of an intelligent context-aware middleware. In The 2012 ACM Conference on Ubiquitous Computing (UbiComp '12), Pittsburgh, PA, USA, 5-8 September 2012 2012 (pp. 1016-1025): ACM New York, NY, USA. doi:10.1145/2370216.2370436.
  • Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., et al. (2010). A survey of context modelling and reasoning techniques. Pervasive Mob. Comput., 6(2), 161-180, doi:10.1016/j.pmcj.2009.06.002.
  • Krummenacher, R., Kopecky, J., & Strang, T. (2005). Sharing Context Information in Semantic Spaces. In On the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops (Vol. 3762, pp. 229-233, Lecture Notes in Computer Science): Springer Berlin Heidelberg.
  • Hervas, R., Bravo, J., & Fontecha, J. (2010). A Context Model based on Ontological Languages: a Proposal for Information Visualization. Journal of Universal Computer Science, 16(12), 1539-1555, doi: 10.3217/jucs-016-12-1539.
  • Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A., & Tanca, L. (2007). A data-oriented survey of context models. SIGMOD Rec., 36(4), 19-26, doi:10.1145/1361348.1361353.
  • Taconet, C., & Kazi-Aoul, Z. I. (2010). Building context-awareness models for mobile applications. JDIM: Journal of digital information management, 8(2), 78-87.
  • Najar, S., Saidani, O., Kirsch-Pinheiro, M., Souveyet, C., & Nurcan, S. Semantic representation of context models: a framework for analyzing and understanding. In Proceedings of the 1st Workshop on Context, Information and Ontologies (CIAO’09) Heraklion, Greece, May 2009 2009 (pp. 1-10). 1552268: ACM. doi:10.1145/1552262.1552268.
  • Buchholz, T., & Schiffers, M. Quality of Context: What It Is And Why We Need It. In The 10th Workshop of the OpenView University Association: OVUA’03, Geneva, Switzerland, 2003 (pp. 1-14): ACM
  • Preuveneers, D., & Berbers, Y. (2007). Architectural backpropagation support for managing ambiguous context in smart environments. In Universal Access in Human-Computer Interaction. Ambient Interaction (Vol. 4555, pp. 178-187, Lecture Notes in Computer Science, Vol. 4555): Springer Berlin Heidelberg.
  • H. Khemissa, M. Ahmed-Nacer, and M. Oussalah, “Adaptive Guidance based on Context Profile for Software Process Modeling,” pp. 50–60, Jul-2012.
  • Stephen Akuma,"Investigating the Effect of Implicit Browsing Behaviour on Students’ Performance in a Task Specific Context", International Journal of Information Technology and Computer Science(IJITCS), vol.6, no.5, pp.11-17, 2014. DOI: 10.5815/ijitcs.2014.05.02
  • Corder, G. W., & Foreman, D. I. (2014). Nonparametric Statistics: A Step-by-Step Approach (2nd Edition). Canada and New Jersey: John Wiley & Sons.
  • Legendre, P. (2005). Species Associations: The Kendall Coefficient of Concordance Revisited. Journal of Agricultural, Biological, and Environmental Statistics, 10(2), 226-245, doi: 10.1198/108571105X46642.
Еще
Статья научная