Study of the bioactive properties, radical scavenging activity and phenolic profiles of extracts Crocus cancellatus subsp. Mazziaricus (Herb.) B. Mathew, 1982

Автор: Deniz Nahide, Aydin Cigdem, Mammadov Ramazan

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Биологические науки

Статья в выпуске: 6 т.9, 2023 года.

Бесплатный доступ

Human beings have used plants as medicine for various health cause of years. Plants are widely used in the traditional medicine of different countries and are a source of strong drugs. To evaluate research some bioactive properties of the extract of the Crocus cancellatus subsp. mazziaricus (Herb.) B. Mathew, 1982 the antioxidant activities of these extracts were analyzed by means of cleaning methods (DPPH, ABTS scavenging activity), β-carotene/linoleic acid test system and FRAP activity. Phenolics and flavonoid contents as the equivalents of gallic acid, quercetin respectively. The phenolic content of the extracts was analyzed using HPLC. Brine shrimp lethality test was applied to analyze cytotoxic activity. The obtained results indicated that the highest phenolic compound ferulic acid with 2376.2±0.00 µg/g was in extracts. The highest total phenolic and flavonoid were found in the ethanolic extracts. The aerial part-methanol extract exhibited the highest antioxidant capacity and the corm acetone extract the highest amount of ferric reducing power activity. Among the four different extracts, the acetone extract showed the highest amount of radical scavenging both corm and aerial parts. The brine shrimp lethality assay of bulb ethanol extract has showed good cytotoxic with LC50 of 320.535 μg/mL. This study will be a source for future studies.

Еще

Antioxidants, bioactive properties, radical scavenging activity, hplc

Короткий адрес: https://sciup.org/14127996

IDR: 14127996   |   DOI: 10.33619/2414-2948/91/04

Список литературы Study of the bioactive properties, radical scavenging activity and phenolic profiles of extracts Crocus cancellatus subsp. Mazziaricus (Herb.) B. Mathew, 1982

  • Harpke, D., Meng, S., Rutten, T., Kerndorff, H., & Blattner, F. R. (2013). Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Molecular phylogenetics and evolution, 66(3), 617-627. https://doi.org/10.1016/j.ympev.2012.10.007
  • Rios, J. L., Recio, M. C., Giner, R. M., & Manez, S. (1996). An update review of saffron and its active constituents. Phytotherapy Research, 10(3), 189-193. https://doi.org/10.1002/(SICI)1099-1573(199605)10
  • Erol, O., Can, L., & Küçüker, O. (2014). Crocus yaseminiae (Iridaceae) a new species from South Anatolia, Turkey. Phytotaxa, 188(2), 103-111. https://doi.org/10.11646/phytotaxa.188.2.4
  • Beiki, A. H., Keifi, F., & Mozafari, J. (2010). Genetic differentiation of Crocus species by random amplified polymorphic DNA. Genet Eng Biotechnol J, 18, 1-10.
  • Khalili, M., Fathi, H., & Ebrahimzadeh, M. A. (2016). Antioxidant activity of bulbs and aerial parts of Crocus caspius, impact of extraction methods. Pak J Pharm Sci, 29(3), 773-777.
  • Loizzo, M. R., Marrelli, M., Pugliese, A., Conforti, F., Nadjafi, F., Menichini, F., & Tundis, R. (2016). Crocus cancellatus subsp. damascenus stigmas: chemical profile, and inhibition of α-amylase, α-glucosidase and lipase, key enzymes related to type 2 diabetes and obesity. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(2), 212-218. https://doi.org/10.3109/14756366.2015.1016510
  • Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L., & Georgiyants, V. (2019). Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry, 162, 56-89. https://doi.org/10.1016/j.phytochem.2019.02.004
  • Konczak, I., Zabaras, D., Dunstan, M., & Aguas, P. (2010). Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chemistry, 122(1), 260-266. https://doi.org/10.1016/j.foodchem.2010.03.004
  • Negro, C., Tommasi, L., & Miceli, A. (2003). Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technology, 87(1), 41-44. https://doi.org/10.1016/S0960-8524(02)00202-X
  • Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food chemistry, 129(2), 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079
  • Temerdashev, Z. A., Frolova, N. A., & Kolychev, I. A. (2011). Determination of phenolic compounds in medicinal herbs by reversed-phase HPLC. Journal of Analytical Chemistry, 66, 407-414. https://doi.org/10.1134/S1061934811040150
  • Goli, S. A. H., Mokhtari, F., & Rahimmalek, M. (2012). Phenolic compounds and antioxidant activity from saffron (Crocus sativus L.) petal. Journal of Agricultural Science, 4(10), 175. https://doi.org/10.5539/jas.v4n10p175
  • Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), 1035-1042. https://doi.org/10.1021/np9904509
  • Baldemir, A., Köroğlu, A., Altanlar, N., & Coşkun, M. (2018). A comparative study on the in vitro antioxidant and antimicrobial potentials of three endemic Ononis L. species from Turkey. Turkish Journal of Pharmaceutical Sciences, 15(2), 125. https://doi.org/10.4274/tjps.62533
  • Nirmala, K. A., & Kanchana, M. (2018). Leucas aspera–A Review of its Biological activity. Systematic Reviews in Pharmacy, 9(1), 41-44. https://doi.org/10.5530/srp.2018.1.8
  • Aydın, C., & Mammadov, R. (2017). Phenolic composition, antioxidant, antibacterial, larvacidal against Culex pipiens, and cytotoxic activities of Hyacinthella lineata s teudel extracts. International Journal of Food Properties, 20(10), 2276-2285.. https://doi.org/10.1080/10942912.2016.1236271
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.49
  • Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. Journal de pharmacie de Belgique, 49(6), 462-468.
  • Ismail, A., & Hong, T. S. (2002). Antioxidant activity of selected commercial seaweeds. Malaysian Journal of Nutrition, 8(2), 167-177.
  • Wu, C., Chen, F., Wang, X., Kim, H. J., He, G. Q., Haley-Zitlin, V., & Huang, G. (2006). Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification. Food Chemistry, 96(2), 220-227. https://doi.org/10.1016/j.foodchem.2005.02.024
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Krishnaraju, A. V., Rao, T. V., Sundararaju, D., Vanisree, M., Tsay, H. S., & Subbaraju, G. V. (2005). Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. International Journal of Applied Science and Engineering, 3(2), 125-134. https://doi.org/10.6703/IJASE.2005.3(2).125
  • Acar, G., Mercan Doğan, N., Duru, M. E., & Kıvrak, I. (2010). Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. African Journal of Microbiology Research.
  • Tuberoso, C. I., Rosa, A., Montoro, P., Fenu, M. A., & Pizza, C. (2016). Antioxidant activity, cytotoxic activity and metabolic profiling of juices obtained from saffron (Crocus sativus L.) floral by-products. Food Chemistry, 199, 18-27. https://doi.org/10.1016/j.foodchem.2015.11.115
  • Esmaeili, N., Ebrahimzadeh, H., Abdi, K., & Safarian, S. (2011). Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study. Pharmacognosy magazine, 7(25), 74. https://doi.org/10.4103/0973-1296.75906
  • Hadizadeh, F., Khalili, N., Hosseinzadeh, H., & Khair-Aldine, R. (2003). Kaempferol from saffron petals. Science Direct Working Paper, (S1574-0331), 04. https://ssrn.com/abstract=2979832
  • Gheldof, N., & Engeseth, N. J. (2002). Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. Journal of agricultural and food chemistry, 50(10), 3050-3055. https://doi.org/10.1021/jf0114637
  • Zengin, G., Mahomoodally, M. F., Sinan, K. I., Picot-Allain, M. C. N., Yildiztugay, E., Cziáky, Z., ... & Ahemad, N. (2020). Chemical characterization, antioxidant, enzyme inhibitory and cytotoxic properties of two geophytes: Crocus pallasii and Cyclamen cilicium. Food Research International, 133, 109129. https://doi.org/10.1016/j.foodres.2020.109129
  • Wali, A. F., Alchamat, H. A. A., Hariri, H. K., Hariri, B. K., Menezes, G. A., Zehra, U., ... & Ahmad, P. (2020). Antioxidant, antimicrobial, antidiabetic and cytotoxic activity of Crocus sativus L. petals. Applied Sciences, 10(4), 1519. https://doi.org/10.3390/app10041519
  • Karimi, E., Oskoueian, E., Hendra, R., & Jaafar, H. Z. (2010). Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules, 15(9), 6244-6256. https://doi.org/10.3390/molecules15096244
  • Termentzi, A., & Kokkalou, E. (2008). LC-DAD-MS (ESI+) analysis and antioxidant capacity of Crocus sativus petal extracts. Planta medica, 74(05), 573-581. https://doi.org/10.1055/s-2008-1074498
  • Satybaldiyeva, D. N., Mursaliyeva, V. K., Mammadov, R., & Zayadan, B. K. (2016). Phenolic profiles and brine shrimp cytotoxicity of the ethanolic extract from the aerial part of Crocus alatavicus L. International Journal of Biology and Chemistry, 9(1), 38-41. https://doi.org/10.26577/2218-7979-2016-9-1-38-41
  • Rahaiee, S., Moini, S., Hashemi, M., & Shojaosadati, S. A. (2015). Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): a review. Journal of Food Science and Technology, 52, 1881-1888. https://doi.org/10.1007/s13197-013-1238-x
  • Satybaldiyeva, D., Mursaliyeva, V., Rakhimbayev, I., Zayadan, B., & Mammadov, R. (2015). Preliminary phytochemical analysis and antioxidant, antibacterial activities of Crocus alatavicus from Kazakhstan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(2), 343-348. https://doi.org/10.15835/nbha43210089
  • Shakeri, R., Khorshidi, J., Radjabian, T., Lashkari, A., & Safavi, M. (2019). Cytotoxic and antioxidant activities of Crocus pallasii subsp. haussknechtii corms extracts compared with Crocus sativus. Research Journal of Pharmacognosy, 6(3). https://doi.org/10.22127/rjp.2019.89461
  • Baba, S. A., Malik, A. H., Wani, Z. A., Mohiuddin, T., Shah, Z., Abbas, N., & Ashraf, N. (2015). Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. South African Journal of Botany, 99, 80-87. https://doi.org/10.1016/j.sajb.2015.03.194
  • Barchan, A., Bakkali, M., Arakrak, A., Pagán, R., & Laglaoui, A. (2014). The effects of solvents polarity on the phenolic contents and antioxidant activity of three Mentha species extracts. Int J Curr Microbiol App Sci, 3(11), 399-412.
  • Tokgun, O., Akca, H., Mammadov, R., Aykurt, C., & Deniz, G. (2012). Convolvulus galaticus, Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells. Journal of Medicinal Food, 15(11), 1000-1005. https://doi.org/10.1089/jmf.2012.0050
Еще
Статья научная