SU(N) - symmetric dynamic aether: general formalism and a hypothesis on spontaneous color polarization

Бесплатный доступ

The SU(N)-symmetric generalization of the model of the electromagnetically active dynamic aether is formulated. This generalization is based on the introduction of a Yang-Mills gauge field instead of the Maxwell field, and of a SU(N)-multiplet of vector fields instead of the standard single vector field. In the framework of the second order version of the effective field theory this generalization includes three constitutive tensors, which are the SU(N) extensions of the tensors appeared in the Einstein-Maxwell-aether theory; we reconstructed the full-format set of these constitutive tensors. The total self-consistent system of master equations for the gauge, vector and gravitational fields is obtained by the variation procedure. The general model of the SU(N)-symmetric dynamic aether is reduced to the extended Einstein-Yang-Mills-aether model by the ansatz about spontaneous color polarization of the vector fields. In fact, this ansatz requires the vector fields, which form the SU(N) multiplet, to become parallel in the group (color) space due to a phase transition, and a new selected direction in the group space to appear, thus converting it into the anisotropic color space.

Еще

Dynamic aether, gauge fields, modified gravity

Короткий адрес: https://sciup.org/142212738

IDR: 142212738

Список литературы SU(N) - symmetric dynamic aether: general formalism and a hypothesis on spontaneous color polarization

  • T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64, 024028 (2001)
  • T. Jacobson and D. Mattingly, Einstein-aether waves, Phys. Rev. D 70, 024003 (2004)
  • C. Heinicke, P. Baekler and F.W. Hehl, Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity, Phys. Rev. D 72, 025012 (2005)
  • C. Eling and T. Jacobson, Spherical solutions in Einstein-aether theory: static aether and stars, Class. Quantum Grav. 23, 5625 (2006)
  • C. Eling and T. Jacobson, Black holes in Einstein-aether theory, Class. Quantum Gravity 23, 5643 (2006)
  • B.Z. Foster, Noether charges and black hole mechanics in Einstein-aether theory, Phys. Rev. D 73, 024005 (2006)
  • T. Jacobson, Einstein-aether gravity: a status report, PoSQG-Ph 020, 020 (2007)
  • C. Eling, T. Jacobson and M.C. Miller, Neutron stars in Einstein-aether theory, Phys. Rev. D 76, 042003 (2007)
  • E. Barausse, T. Jacobson and T.P. Sotiriou, Black holes in Einstein-aether and Horava-Lifshitz gravity, Phys. Rev. D 83, 124043 (2011)
  • T. Jacobson and A.J. Speranza, Variations on an aethereal theme, Phys. Rev. D 92, 044030 (2015)
  • S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59
  • S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, Phys. Rept. 692, 1 (2017)
  • C. M. Will, Theory and experiment in gravitational physics, Cambridge University Press, Cambridge, 1993
  • C.M. Will and K. Nordtvedt, Conservation laws and preferred frames in relativistic gravity. I. Preferred-frame theories and an extended PPN formalism, Astrophys. J. 177, 757 (1972)
  • K. Nordtvedt and C. M. Will, Conservation laws and preferred frames in relativistic gravity. II. Experimental evidence to rule out preferred-frame theories of gravity, Astrophys. J. 177, 775 (1972)
  • A.B. Balakin, Axionic extension of the Einstein-aether theory, Phys. Rev. D, 94, 024021 (2016)
  • A.B. Balakin and J.P.S. Lemos, Einstein-aether theory with a Maxwell field: General formalism, Ann. Phys. 350, 454 (2014)
  • T.Yu. Alpin and A.B. Balakin, The Einstein-Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response, Int. J. Mod. Phys. D 25, 1650048 (2016)
  • A.B. Balakin, Electrodynamics of a cosmic dark fluid, Symmetry 8, 56 (2016)
  • A.B. Balakin and N.N. Dolbilova, Electrodynamic phenomena induced by a dark fluid: analogs of pyromagnetic, piezoelectric, and striction effects, Phys. Rev. D 89, 104012 (2014)
  • A.B. Balakin and T.Yu. Alpin, Extended axion electrodynamics: anomalous dynamo-optical response induced by gravitational pp-waves, Gravit. Cosmol. 20, 152 (2014)
  • T.Yu. Alpin and A.B. Balakin, Birefringence induced by pp-wave modes in an electromagnetically active dynamic aether, Eur. Phys. Journal C 77, 699 (2017)
  • A.B. Balakin and V.A. Popov, Einstein-aether theory: Dynamics of relativistic particles with spin or polarization in a G¨odel-type universe, Journal of Cosmology and Astroparticle Physics, 2017, N4, 025 (2017)
  • M.S. Volkov and D.V. Gal'tsov, Gravitating non-Abelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319, 1 (1999)
  • P.B. Yasskin, Solutions for gravity coupled to massless gauge fields, Phys. Rev. D 12, 2212 (1975)
  • D.V. Galtsov, Particles and fields in the environment of black holes, MGU, Moscow, 1986
  • A.B. Balakin, V.R. Kurbanova and W. Zimdahl, Parametric phenomena of the particle dynamics in a periodic gravitational wave field, J. Math. Phys. 44, 5120 (2003)
  • L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of continuous media, Butterworth Heinemann, Oxford 1960
  • A.B. Balakin and W. Zimdahl, Optical metrics and birefringence of anisotropic media, Gen. Relativ. Gravit. 37, 1731 (2005)
  • A.B. Balakin, H. Dehnen and A.E. Zayats, Non-minimal Einstein-Yang-Mills-Higgs theory: Associated, color and color-acoustic metrics for the Wu-Yang monopole model, Phys. Rev.D, 76, 124011 (2007)
  • A.B. Balakin, H. Dehnen and A.E. Zayats, Non-minimal isotropic cosmological model with Yang-Mills and Higgs fields, Int. J. Mod. Phys. D, 17, 1255 (2008)
  • A.B. Balakin, H. Dehnen and A.E. Zayats, Effective metrics in the non-minimal Einstein-Yang-Mills-Higgs theory, Annals of Physics, 323, 2183 (2008)
  • A.B. Balakin, H. Dehnen and A.E. Zayats, Non-minimal pp-wave Einstein-Yang-Mills-Higgs model: color cross-effects induced by curvature, Gen. Relat. Gravit. 40, 2493 (2008)
  • C.P. Burgess, Introduction to effective field Tteory, Ann. Rev. Nucl. Part. Sci. 57, 329 (2007)
  • S. Weinberg, Effective field theory, past and future, PoS CD 09, 001 (2009)
  • V. Rubakov, Classical theory of gauge fields, Princeton University Press, Princeton and Oxford, 2002
  • A.I. Akhiezer and S.V. Peletminsky, Fields and fundamental interactions, Taylor and Francis, London, 2002
  • A.C. Eringen and G.A. Maugin, Electrodynamics of continua, Vol. I and II, Springer-Verlag, New York, 1990
  • F.W. Hehl and Yu.N. Obukhov, Foundations of classical electrodynamics: Charge, flux, and metric, Birkh¨auser, Boston, 2003
  • L.D. Landau and E.M. Lifshitz, The classical theory of fields, Vol.2, Pergamon Press, Oxford, 1971
Еще
Статья научная