Sugarcane crop yield forecasting model using supervised machine learning

Автор: Ramesh A. Medar, Vijay S. Rajpurohit, Anand M. Ambekar

Журнал: International Journal of Intelligent Systems and Applications @ijisa

Статья в выпуске: 8 vol.11, 2019 года.

Бесплатный доступ

Agriculture is the most important sector in the Indian economy and contributes 18% of Gross Domestic Product (GDP). India is the second largest producer of sugarcane crop and produces about 20% of the world's sugarcane. In this paper, a novel approach to sugarcane yield forecasting in Karnataka(India) region using Long-Term-Time-Series (LTTS), Weather-and-soil attributes, Normalized Vegetation Index(NDVI) and Supervised machine learning(SML) algorithms have been proposed. Sugarcane Cultivation Life Cycle (SCLC) in Karnataka(India) region is about 12 months, with plantation beginning at three different seasons. Our approach divides yield forecasting into three stages, i)soil-and-weather attributes are predicted for the duration of SCLC, ii)NDVI is predicted using Support Vector Machine Regression (SVR) algorithm by considering soil-and-weather attributes as input, iii)sugarcane crop is predicted using SVR by considering NDVI as input. Our approach has been verified using historical dataset and results have shown that our approach has successfully modeled soil and weather attributes prediction as 24 steps LTTS with accuracy of 85.24% for Soil Temperature given by Lasso algorithm, 85.372% accuracy for Temperature given by Naive-Bayes algorithm, accuracy for Soil Moisture is 77.46% given by Naive-Bayes, NDVI prediction with accuracy of 89.97% given by SVR-RBF, crop prediction with accuracy of 83.49% given by SVR-RBF.

Еще

Agriculture, NDVI, Machine Learning, Support Vector Regression, Crop Prediction

Короткий адрес: https://sciup.org/15016612

IDR: 15016612   |   DOI: 10.5815/ijisa.2019.08.02

Список литературы Sugarcane crop yield forecasting model using supervised machine learning

  • Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji, Amaury Lendasse, Methodology for long-term prediction of time series, Neurocomputing, Volume 70, Issues 16–18, 2007, Pages 2861-2869, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2006.06.015.
  • H. Aghighi, M. Azadbakht, D. Ashourloo, H. S. Shahrabi, and S. Radiom, "Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 12, pp. 4563-4577, Dec. 2018.
  • W.G.N.N. Jayawardhana, V.M.I. Chathurange, Extraction of Agricultural Phenological Parameters of Sri Lanka Using MODIS, NDVI Time Series Data, Procedia Food Science, Volume 6, 2016, Pages 235-241, ISSN 2211-601X, https://doi.org/10.1016/j.profoo.2016.02.027.
  • Y.R. Lai, M.J. Pringle, P.M. Kopittke, N.W. Menzies, T.G. Orton, Y.P. Dang, An empirical model for prediction of wheat yield, using time-integrated Landsat NDVI, International Journal of Applied Earth Observation and Geoinformation, Volume 72, 2018, Pages 99-108, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2018.07.013.
  • Saeed, Umer & Dempewolf, Jan & Becker-Reshef, Inbal & Khan, Ahmad & Ahmad, Ashfaq & Aftab Wajid, Syed. (2017). Forecasting wheat yield from weather data and MODIS NDVI using Random Forests for Punjab province, Pakistan. International Journal of Remote Sensing. 38. 4831-4854. 10.1080/01431161.2017.1323282.
  • Manasah S. Mkhabela, Milton S. Mkhabela, Nkosazana N. Mashinini, Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAA's-AVHRR, Agricultural and Forest Meteorology, Volume 129, Issues 1–2, 2005, Pages 1-9, ISSN 0168-1923, https://doi.org/10.1016/j.agrformet.2004.12.006.
  • Prasad, Anup & Singh, R & Tare, V & Kafatos, Menas. (2007). Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International Journal of Remote Sensing. 28. 5207-5235. 10.1080/01431160601105843.
  • Ahmed, Nesreen & Atiya, Amir & Gayar, Neamat & El-Shishiny, Hisham. (2010). An Empirical Comparison of Machine Learning Models for Time Series Forecasting. Econometric Reviews. 29. 594-621. 10.1080/07474938.2010.481556.
  • X.E. Pantazi, D. Moshou, T. Alexandridis, R.L. Whetton, A.M. Mouazen, Wheat yield prediction using machine learning and advanced sensing techniques, Computers and Electronics in Agriculture, Volume 121, 2016, Pages 57-65, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2015.11.018.
  • J. Huang, H. Wang, Q. Dai and D. Han, "Analysis of NDVI Data for Crop Identification and Yield Estimation," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 11, pp. 4374-4384, Nov. 2014.
  • Anup K. Prasad, Lim Chai, Ramesh P. Singh, Menas Kafatos, Crop yield estimation model for Iowa using remote sensing and surface parameters, International Journal of Applied Earth Observation and Geoinformation, Volume 8, Issue 1, 2006, Pages 26-33, ISSN 0303-2434, https://doi.org/10.1016/j.jag.2005.06.002.
  • David M. Johnson, An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States, Remote Sensing of Environment, Volume 141, 2014, Pages 116-128, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2013.10.027.
  • Yaping Cai, Kaiyu Guan, Jian Peng, Shaowen Wang, Christopher Seifert, Brian Wardlow, Zhan Li, A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach, Remote Sensing of Environment, Volume 210, 2018, Pages 35-47, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2018.02.045.
  • Yaoliang Chen, Dengsheng Lu, Lifeng Luo, Yadu Pokhrel, Kalyanmoy Deb, Jingfeng Huang, Youhua Ran, Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data, Remote Sensing of Environment, Volume 204, 2018, Pages 197-211, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.10.030.
  • Parihar, J & Oza, Markand. (2006). FASAL: An integrated approach for crop assessment and production forecasting. Proceedings of SPIE - The International Society for Optical Engineering. 6411. 10.1117/12.713157.
  • Steduto, Pasquale & Hsiao, Theodore & Raes, Dirk & Fereres, E. (2009). AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal - AGRON J. 101. 10.2134/agronj2008.0139s.
  • X.E. Pantazi, D. Moshou, T. Alexandridis, R.L. Whetton, A.M. Mouazen, Wheat yield prediction using machine learning and advanced sensing techniques, Computers and Electronics in Agriculture, Volume 121, 2016, Pages 57-65, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2015.11.018.
  • D Jones, E.M Barnes, Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management, Agricultural Research Division, University of Nebraska, Agricultural Systems, Volume 65, Issue 3, 2000, Pages 137-158, ISSN 0308-521X, https://doi.org/10.1016/S0308-521X(00)00026-3.
  • Jiang, Dong & Yang, X.H. & Clinton, Nicholas & Wang, Naijiang. (2004). An artificial network model for estimating crop yields using remotely sensed information. International Journal of Remote Sensing. 25. 1723-1732. 10.1080/0143116031000150068.
  • P. Bose, N. K. Kasabov, L. Bruzzone, and R. N. Hartono, "Spiking Neural Networks for Crop Yield Estimation Based on Spatiotemporal Analysis of Image Time Series," in IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 11, pp. 6563-6573, Nov. 2016.
  • Fang, Hongliang & Liang, Shunlin & Hoogenboom, Gerrit. (2011). Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing - INT J REMOTE SENS. 32. 1039-1065. 10.1080/01431160903505310.
  • www.imd.gov.in/advertisements/20170809_advt_36.pdf
  • Singh, Arti & Ganapathysubramanian, Baskar & Singh, Asheesh & Sarkar, Soumik. (2015). Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends in Plant Science. 21. 10.1016/j.tplants.2015.10.015.
  • R. Tibshirani, "Regression shrinkage and selection via the lasso: a retrospective," J. R. Statist. Soc. B (2011), p. 10, 2011.
  • https://www.gktoday.in/gk/major-sugarcane-producing-areas-of-india/
  • http://www.yourarticlelibrary.com/cultivation/sugarcane-cultivation-in-india-conditions- production-and-distribution/20945
  • http://www.nijalingappasugar.com/sugarcanescenario.html
  • https://www.meteoblue.com/en/weather/forecast/week/16.246N74.737E
  • http://bhuvan-noeda.nrsc.gov.in/data/download/index.php
Еще
Статья научная