SVM-based classifier ensembles design with co-operative biology inspired algorithm

Автор: Akhmedova Sh. A., Semenkin E.S.

Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau

Рубрика: Математика, механика, информатика

Статья в выпуске: 1 т.16, 2015 года.

Бесплатный доступ

The meta-heuristic called Co-Operation of Biology Related Algorithms (COBRA) is used for the automated design of a support vector machine (SVM) based classifiers ensemble. Two non-standard schemes, based on the use of the locally most effective ensemble member’s output, are used to infer the ensemble decision. The usefulness of the approach is demonstrated on four benchmark classification problems solved: two bank scoring problems (Australian and German) and two medical diagnostic problems (Breast Cancer Wisconsin and Pima Indians Diabetes). Numerical experiments showed that classifier ensembles designed by COBRA exhibit high performance and reliability for separating instances from different categories. Ensembles of SVM-based classifiers implemented in this way outperform many alternative methods on the mentioned benchmark classification problems.

Еще

Support vector machines, ensembles, biology inspired algorithms, classification, optimization

Короткий адрес: https://sciup.org/148177399

IDR: 148177399

Список литературы SVM-based classifier ensembles design with co-operative biology inspired algorithm

  • Dietterich T. G. Machine learning research: Four current directions//AI Mag. 1997. 18. P. 97-136
  • Rojas R. Neural networks: a systematic introduction. Berlin: Springer-Verlag, 1996. 502 p
  • Yager R. R., Filev D. P. Essentials of fuzzy modeling and control. New York: Wiley, 1994. 408 p
  • Eiben A. E., Smith J. E. Introduction to evolutionary computing. Berlin: Springer, 2003. 300 p
  • Вапник В., Червоненкис А. Теория распознавания образов. М.: Наука, 1974. 415 c
  • Akhmedova Sh., Semenkin E. Co-Operation of Biology Related Algorithms//Proceedings of the IEEE Congress on Evolutionary Computation (CEC’2013). 2013. P. 2207-2214
  • Ахмедова Ш. А., Семенкин Е. С. Новый коллективный метод оптимизации на основе кооперации бионических алгоритмов//Вестник СибГАУ. 2013. № 4 (50). C. 92-99
  • Joachims T. Text categorization with Support Vector Machines: Learning with many relevant features//Proceedings of the 10th European Conference on Machine Learning (ECML’1998). 1998. P. 137-142
  • Попов Е. А., Семенкина М. Е., Липинский Л. В. Эволюционный алгоритм для автоматической генерации нейросетевых систем подавления шума//Вестник СибГАУ. 2013. № 4 (44). С. 79-82
  • Kennedy J., Eberhart R. Particle Swarm Optimization//Proceedings of Intern. Conf. on Neural networks IV. 1995. P. 1942-1948
  • Chenguang Yang, Xuyan Tu and Jie Chen. Algorithm of Marriage in Honey Bees Optimization Based on the Wolf Pack Search//Proceedings of Intern. Conf. on Intelligent Pervasive Computing (IPC2007). 2007. P. 462-467
  • Yang X. S. Firefly algorithms for multimodal optimization//Proceedings of 5th Symposium on Stochastic Algorithms, Foundations and Applications (SAGA 2009). 2009. P. 169-178
  • Yang X. S., Deb S. Cuckoo Search via Levy flights//Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBic2009). 2009. P. 210-214
  • Yang X. S. A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization//Studies in Computational Intelligence. 2010. Vol. 284. P. 65-74
  • Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization: Technical Report/J. J. Liang ; Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, and Technical Report/Nanyang Technological University. Singapore, 2012
  • Deb K. An efficient constraint handling method for genetic algorithms//Computer methods in applied mechanics and engineering. 2000. Vol. 186 (2-4). P. 311-338
  • Liang J. J., Shang Z., Li Z. Coevolutionary Comprehensive Learning Particle Swarm Optimizer//Proceedings of Congress on Evolutionary Computation (CEC’2010). 2010. P. 1505-1512
  • Mallipeddi R., Suganthan P. N. Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization: Technical report/Nanyang Technological University. Singapore, 2009
  • Frank A., Asuncion A. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2010. URL: http://archive.ics.uci.edu/ml
  • Huang J.-J., Tzeng G.-H., Ong Ch.-Sh. Two-stage genetic programming (2SGP) for the credit scoring model//Applied Mathematics and Computation. 2006. Vol. 174. P. 1039-1053
  • Marcano-Cedeno A., Quintanilla-Domínguez J., Andina D. WBCD breast cancer database classification applying artificial metaplasticity neural network//Expert Systems with Applications. 2011. Vol. 38, iss. 8. P. 9573-9579
  • Temurtas H., Yumusak N., Temurtas F. A comparative study on diabetes disease diagnosis using neural networks//Expert Systems with Applications. 2009. Vol. 36, No. 4. P. 8610-8615
Еще
Статья научная