Технология безопасного и энергоэффективного хранения сжиженного углеводородного газа на объектах стратегического назначения
Автор: Шевцов С.А., Фетисов Е.В.
Журнал: Вестник Воронежского государственного университета инженерных технологий @vestnik-vsuet
Рубрика: Химическая технология
Статья в выпуске: 1 (87), 2021 года.
Бесплатный доступ
Предложена технология безопасного и энергоэффективного хранения сжиженного углеводородного газа (СУГ) на объектах стратегического назначения. Разработана стратегия управления технологическими параметрами процесса конденсации паров СУГ и регазификации жидкой фазы. Особенность технологии заключается в применении парокомпрессионного теплового насоса как источника альтернативной энергии при стабилизации температурных режимов, предотвращающих потери СУГ и обеспечивающих заданную производительность регазификации при подаче потребителю. Компрессор теплового насоса позволяет обеспечить необходимую степень компрессионного сжатия в рабочем диапазоне температур в конденсаторе теплового насоса, а дросселирование хладагента через терморегулирующий вентиль обеспечивает стабилизацию необходимого давления, соответствующего заданному интервалу значений температур кипения хладагента в испарителе. Регулирование этих параметров в условиях случайных возмущений, обусловленных внешними факторами, создает условия для полной конденсации паров СУГ различного состава, образовавшихся в результате его самоиспарения, а также поддерживает производительность процесса регазификации в области заданных значений независимо от климатической зоны. Предлагаемое автоматическое управление позволит обеспечить точность и надежность управления за счет снижения разброса регулируемых параметров, обеспечить их варьирование в заданном диапазоне, что является существенным резервом интенсификации тепловых процессов при снижении величины пожарного риска и повышении экологической безопасности окружающей среды, в том числе за счет использования безвредного, негорючего, взрывобезопасного хладагента. Использование оперативной информации с объекта управления для регулирования температурных режимов конденсации паров сжиженного углеводородного газа в испарителе и его регазификации в конденсаторе парокомпрессионного теплового насоса в пределах заданных значений создает оптимальные условия хранения и отпуска газа в резервуарах большой вместимости с минимальными энергетическими затратами.
Углеводородный газ, хранение, регазификация, тепловой насос, безопасность, управление
Короткий адрес: https://sciup.org/140257337
IDR: 140257337 | DOI: 10.20914/2310-1202-2021-1-297-302
Список литературы Технология безопасного и энергоэффективного хранения сжиженного углеводородного газа на объектах стратегического назначения
- Пожар на газораспределительной станции в Казани. URL: https://tass.ru/proisshestviya/8716257
- Yadav B.C., Yadav A., Shukla Т., Singh S. et al. Solid-state titania-based gas sensor for liquefied petroleum gas detection at room temperature //Bulletin of Materials Science. 2011. V. 34. №. 7. P. 1639-1644. doi: 10.1007/sl2034-011-0370-3
- Shevtsov S.A., Kargashilov D.V., Shutkin A.N. Fire and explosion safe technology of storage and regasification of liquefied petroleum gas // Chemical and Petroleum Engineering. 2018. V. 54. № 1-2. P. 38^10. doi: 10.1007/sl0556-018-0435-x
- Shevtsov S.A., Kargashilov D.V., Zenin A. Y. Control system for the process of storing liquefied petroleum gas in an isothermal tank within the range of fireproof and explosionproof operating parameters // Chemical and Petroleum Engineering. 2020. V. 56. № 1-2. P. 105-108. doi: 10.1007/sl0556-020-00746-3
- Пат. № 2681559, RU, F17C 9/02, F17C9/02. Способ управления процессами конденсации паров в изотермическом резервуаре и регазификации сжиженного углеводородного газа / Шевцов С.А., Каргашилов Д.В., Шуткин А.Н., Усачев Д.К., ФедорищевВ.Р. № 2017136522; Заявл. 16.10.2017; Опубл. 11.03.2019, Бюл. № 8.
- Moura L.G. et al. Steam reforming of liquefied petroleum gas using catalysts supported on ceria-silica //International Journal of Hydrogen Energy. 2021. V. 46. №. 2. P. 1801-1814. doi: 10.1016/j.ijhydene.2020.10.021
- Feng J. et al. Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes // Environmental Pollution. 2020. V. 267. P. 115623. doi: 10.1016/j.envpol.2020.115623
- Wang M. et al. On-road tailpipe emission characteristics and ozone formation potentials of VOCs from gasoline, diesel and liquefied petroleum gas fueled vehicles // Atmospheric Environment. 2020. V. 223. P. 117294. doi: 10.1016/j.atmosenv.2020.117294
- Lee I. et al. Rapid synthesis of graphene by chemical vapor deposition using liquefied petroleum gas as precursor // Carbon. 2019. V. 145. P. 462-469. doi: 10.1016/j.carbon.2019.01.004
- Shen G. et al. Evaluating the performance of household liquefied petroleum gas cookstoves // Environmental science & technology. 2018. V. 52. №. 2. P. 904-915. doi: 10.1021/acs.est.7b05155
- Buchanan A.H., Abu A.K. Structural design for fire safety. John Wiley & Sons, 2017.
- Purkiss J.A., Li L.Y. Fire safety engineering design of structures. CRC press, 2013.
- 01awoyin R. Nanotechnology: The future of fire safety // Safety science. 2018. V. 110. P. 214-221. doi: 10.1016/j.ssci.2018.08.016
- De Boer J., Stapleton H.M. Toward fire safety without chemical risk // Science. 2019. V. 364. №. 6437. P. 231-232. doi: 10.1126/science.aax2054
- Paltrinieri N., Tugnoli A., Cozzani V. Hazard identification for innovative LNG regasification technologies // Reliability Engineering & System Safety. 2015. V. 137. P. 18-28. doi: 10.1016/j.ress.2014.12.006
- Gomez M.R., Garcia R.F., Gomez J.R., Carril J.C. Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process // Renewable and Sustainable Energy Reviews. 2014. V. 38. P. 781-795. doi: 10.1016/j.rser.2014.07.029
- Mehrpooya M., Sharifzadeh M.M.M., Katooli M.H. Thermodynamic analysis of integrated LNG regasification process configurations // Progress in Energy and Combustion Science. 2018. V. 69. P. 1-27. doi: 10.1016/j.pecs.2018.06.001
- Atienza-Marquez A., Bruno J.C., Coronas A. Cold recovery from LNG-regasification for polygeneration applications //Applied Thermal Engineering. 2018. V. 132. P. 463-478. doi: 10. lbl6/j.applthermaleng.2017.12.073
- La Rocca V. Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket//Energy. 2011. V. 36. №. 8. P. 4897-4908. doi: 10.1016/j.energy 2011.05.034
- Park J., Lee I., You F., Moon I. Economic process selection of liquefied natural gas regasification: power generation and energy storage applications // Industrial & Engineering Chemistry Research. 2019. V. 58. №. 12. P. 4946-4956. doi: 10.1021/acs.iecr.9b00179