Тень кротовой норы Эллиса-Бронникова
Автор: Ишкаева В.А., Сушков С.В.
Журнал: Пространство, время и фундаментальные взаимодействия @stfi
Рубрика: Гравитация, космология и фундаментальные поля
Статья в выпуске: 2 (39), 2022 года.
Бесплатный доступ
В работе построены тени невращающейся и медленно вращающейся кротовых нор Эллиса-Бронникова, исследованы характеристики теней в зависимости от параметров кротовых нор, проведено сравнение размеров теней черной дыры Шварцшильда и невращающейся кротовой норы Эллиса-Бронникова и теней черной дыры Керра и медленно вращающейся кротовой норы Эллиса-Бронникова.
Черная дыра, кротовая нора, тень кротовой норы
Короткий адрес: https://sciup.org/142235697
IDR: 142235697 | DOI: 10.17238/issn2226-8812.2022.2.26-42
Список литературы Тень кротовой норы Эллиса-Бронникова
- Perlick V., Tsupko O.Y. Calculating black hole shadows: review of analytical studies. Physics Reports, 2022, vol. 947, pp. 1-39. https://doi.org/10.1016/j.physrep.2021.10.004
- Akiyama K. et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters, 2019, vol. 875, no. 1, p. L1.
- Akiyama K. et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. The Astrophysical Journal Letters, 2022, vol. 930, no. 2, p. L14. https://doi.org/10.3847/2041-8213/ac6429
- Einstein A., Rosen N. The particle problem in the general theory of relativity. Physical Review, 1935, vol. 48, no. 1, p. 73. https://doi.org/10.1103/PhysRev.48.73
- Misner C.W., Wheeler J.A. Classical physics as geometry. Annals of physics, 1957, vol. 2, no. 6, pp. 525-603. https://doi.org/10.1016/0003-4916(57)90049-0
- Ellis H.G. Ether ow through a drainhole: A particle model in general relativity. Journal of Mathematical Physics, 1973, vol. 14, no. 1, pp. 104 118. https://doi.org/10.1063/1.1666161
- Bronnikov K.A. Scalar-tensor theory and scalar charge. Acta Physica Polonica, 1973, p. B4.
- Ellis H.G. The evolving, owless drainhole: A nongravitating-particle model in general relativity theory. General Relativity and Gravitation, 1979, vol. 10, no. 2, pp. 105 123. https://doi.org/10.1007/BF00756794
- Clement G. A class of wormhole solutions to higher-dimensional general relativity. General relativity and gravitation, 1984, vol. 16, no. 2, pp. 131 138. https://doi.org/10.1007/BF00762442
- Clement G. Axisymmetric regular multiwormhole solutions in ve-dimensional general relativity. General relativity and gravitation, 1984, vol. 16, no. 5, pp. 477 489. https://doi.org/10.1007/BF00762340
- Morris M.S., Thorne K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 1988, vol. 56, no. 5, pp. 395 412. https://doi.org/10.1119/1.15620
- Morris M.S., Thorne K.S., Yurtsever U. Wormholes, time machines, and the weak energy condition. Physical Review Letters, 1988, vol. 61, no. 13, p. 1446. https://doi.org/10.1103/PhysRevLett.61.1446
- Visser M. Lorentzian Wormholes. From Einstein to Hawking,Woodbury, N.Y.: American Institute of Physics, 1995, 437 p.
- Lobo F.S. N. Exotic solutions in General Relativity: Traversable wormholes and 'warp drive' spacetimes, 2007, arXiv:0710.4474[gr-qc].
- Chervon S.V., Fabris J.C., Fomin I.V. Black holes and wormholes in f(R) gravity with a kinetic curvature scalar. Classical and Quantum Gravity, 2021, vol. 38, no. 11, p. 115005. https://doi.org/10.1088/1361-6382/abebf0
- Chetouani L., Clement G. Geometrical optics in the Ellis geometry. General relativity and gravitation, 1984, vol. 16, no. 2, pp. 111 119. https://doi.org/10.1007/BF00762440
- Perlick V. Exact gravitational lens equation in spherically symmetric and static spacetimes. Physical Review D, 2004, vol. 69, no. 6, p. 064017. https://doi.org/10.1103/PhysRevD.69.064017
- Nandi K.K., Zhang Y.Z., Zakharov A.V. Gravitational lensing by wormholes. Physical Review D, 2006, vol. 74, no. 2, p. 024020. https://doi.org/10.1103/PhysRevD.74.024020
- Muller T. Exact geometric optics in a Morris-Thorne wormhole spacetime. Physical Review D, 2008, vol. 77, no. 4, p. 044043. https://doi.org/10.1103/PhysRevD.77.044043
- Nakajima K., Asada H. De-ection angle of light in an Ellis wormhole geometry. Physical Review D, 2012, vol. 85, no. 10, p. 107501. https://doi.org/10.1103/PhysRevD.85.107501
- Tsukamoto N. Strong de-ection limit analysis and gravitational lensing of an Ellis wormhole. Physical Review D, 2016, vol. 94, no. 12, p. 124001. https://doi.org/10.1103/PhysRevD.94.124001
- Tsukamoto N., Harada T. Light curves of light rays passing through a wormhole. Physical Review D, 2017, vol. 95, no. 2, p. 024030. https://doi.org/10.1103/PhysRevD.95.024030
- Bronnikov K.A., Baleevskikh K.A. On gravitational lensing by symmetric and asymmetric wormholes. Gravitation and Cosmology, 2019, vol. 25, no. 1, pp. 44-49. https://doi.org/10.1134/S020228931901002X
- Shaikh R. et al. A novel gravitational lensing feature by wormholes. Physics Letters B, 2019, vol. 789, pp. 270-275. https://doi.org/10.1016/j.physletb.2018.12.030
- Wang X. et al. Novel shadows from the asymmetric thin-shell wormhole. Physics Letters B, 2020, vol. 811, p. 135930. https://doi.org/10.1016/j.physletb.2020.135930
- Bugaev M.A. et al. Gravitational lensing and wormhole shadows. Astronomy Reports, 2021, vol. 65, no. 12, pp. 1185-1193. https://doi.org/10.1134/S1063772921120027
- Jusu K. et al. Constraining Wormhole Geometries using the Orbit of S2 Star and the Event Horizon Telescope, 2021. arXiv:2106.08070 [gr-qc].
- Nedkova P.G., Tinchev V.K., Yazadjiev S.S. Shadow of a rotating traversable wormhole. Physical Review D, 2013, vol. 88, no. 12, p. 124019. https://doi.org/10.1103/PhysRevD.88.124019
- Ohgami T., Sakai N. Wormhole shadows in rotating dust. Physical Review D, 2016, vol. 94, no. 6, p. 064071. https://doi.org/10.1103/PhysRevD.94.064071
- Shaikh R. Shadows of rotating wormholes. Physical Review D, 2018, vol. 98, no. 2, p. 024044. https://doi.org/10.1103/PhysRevD.98.024044
- Amir M. et al. Shadow images of Kerr-like wormholes. Classical and Quantum Gravity, 2019, vol. 36, no. 21, p. 215007. https://doi.org/10.1088/1361-6382/ab42be
- Kasuya S., Kobayashi M. Throat e-ects on shadows of Kerr-like wormholes. Physical Review D, 2021, vol. 103, no. 10, p. 104050. https://doi.org/10.1103/PhysRevD.103.104050
- Rahaman F. et al. Shadows of Lorentzian traversable wormholes. Classical and Quantum Gravity, 2021, vol. 38, no. 21, p. 215007. https://doi.org/10.1088/1361-6382/ac213b
- Kashargin P.E., Sushkov S.V. Slowly rotating wormholes: the rst-order approximation. Gravitation and Cosmology, 2008, vol. 14, no. 1, pp. 80-85. https://doi.org/10.1134/S0202289308010106
- Tsukamoto N., Harada T., Yajima K. Can we distinguish between black holes and wormholes by their Einstein-ring systems? Physical Review D, 2012, vol. 86, no. 10, p. 104062. https://doi.org/10.1103/ PhysRevD.86.104062
- Carter B. Global structure of the Kerr family of gravitational elds. Physical Review, 1968, vol. 174, no. 5, p. 1559. https://doi.org/10.1103/PhysRev.174.1559
- Bardeen J.M., Press W.H., Teukolsky S.A. Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. The Astrophysical Journal, 1972, vol. 178, p. 347. https://doi.org/10.1086/151796
- Vazquez S.E., Esteban E.P. Strong eld gravitational lensing by a Kerr black hole. Nuovo Cimento B, 2004, vol. 119, no. 5, pp. 489-519.
- Chandrasekhar S. The mathematical theory of black holes. N.Y.: Oxford university press, 1998. 672 p.
- Bardeen J.M. Timelike and Null Geodesics in the Kerr Metric. Black Holes (Les Astres Occlus), edited by C. Dewitt and B.S. Dewitt, New York, 1973, pp. 215 239.