Тень кротовой норы Эллиса-Бронникова

Бесплатный доступ

В работе построены тени невращающейся и медленно вращающейся кротовых нор Эллиса-Бронникова, исследованы характеристики теней в зависимости от параметров кротовых нор, проведено сравнение размеров теней черной дыры Шварцшильда и невращающейся кротовой норы Эллиса-Бронникова и теней черной дыры Керра и медленно вращающейся кротовой норы Эллиса-Бронникова.

Черная дыра, кротовая нора, тень кротовой норы

Короткий адрес: https://sciup.org/142235697

IDR: 142235697   |   DOI: 10.17238/issn2226-8812.2022.2.26-42

Список литературы Тень кротовой норы Эллиса-Бронникова

  • Perlick V., Tsupko O.Y. Calculating black hole shadows: review of analytical studies. Physics Reports, 2022, vol. 947, pp. 1-39. https://doi.org/10.1016/j.physrep.2021.10.004
  • Akiyama K. et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. The Astrophysical Journal Letters, 2019, vol. 875, no. 1, p. L1.
  • Akiyama K. et al. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. The Astrophysical Journal Letters, 2022, vol. 930, no. 2, p. L14. https://doi.org/10.3847/2041-8213/ac6429
  • Einstein A., Rosen N. The particle problem in the general theory of relativity. Physical Review, 1935, vol. 48, no. 1, p. 73. https://doi.org/10.1103/PhysRev.48.73
  • Misner C.W., Wheeler J.A. Classical physics as geometry. Annals of physics, 1957, vol. 2, no. 6, pp. 525-603. https://doi.org/10.1016/0003-4916(57)90049-0
  • Ellis H.G. Ether ow through a drainhole: A particle model in general relativity. Journal of Mathematical Physics, 1973, vol. 14, no. 1, pp. 104 118. https://doi.org/10.1063/1.1666161
  • Bronnikov K.A. Scalar-tensor theory and scalar charge. Acta Physica Polonica, 1973, p. B4.
  • Ellis H.G. The evolving, owless drainhole: A nongravitating-particle model in general relativity theory. General Relativity and Gravitation, 1979, vol. 10, no. 2, pp. 105 123. https://doi.org/10.1007/BF00756794
  • Clement G. A class of wormhole solutions to higher-dimensional general relativity. General relativity and gravitation, 1984, vol. 16, no. 2, pp. 131 138. https://doi.org/10.1007/BF00762442
  • Clement G. Axisymmetric regular multiwormhole solutions in ve-dimensional general relativity. General relativity and gravitation, 1984, vol. 16, no. 5, pp. 477 489. https://doi.org/10.1007/BF00762340
  • Morris M.S., Thorne K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 1988, vol. 56, no. 5, pp. 395 412. https://doi.org/10.1119/1.15620
  • Morris M.S., Thorne K.S., Yurtsever U. Wormholes, time machines, and the weak energy condition. Physical Review Letters, 1988, vol. 61, no. 13, p. 1446. https://doi.org/10.1103/PhysRevLett.61.1446
  • Visser M. Lorentzian Wormholes. From Einstein to Hawking,Woodbury, N.Y.: American Institute of Physics, 1995, 437 p.
  • Lobo F.S. N. Exotic solutions in General Relativity: Traversable wormholes and 'warp drive' spacetimes, 2007, arXiv:0710.4474[gr-qc].
  • Chervon S.V., Fabris J.C., Fomin I.V. Black holes and wormholes in f(R) gravity with a kinetic curvature scalar. Classical and Quantum Gravity, 2021, vol. 38, no. 11, p. 115005. https://doi.org/10.1088/1361-6382/abebf0
  • Chetouani L., Clement G. Geometrical optics in the Ellis geometry. General relativity and gravitation, 1984, vol. 16, no. 2, pp. 111 119. https://doi.org/10.1007/BF00762440
  • Perlick V. Exact gravitational lens equation in spherically symmetric and static spacetimes. Physical Review D, 2004, vol. 69, no. 6, p. 064017. https://doi.org/10.1103/PhysRevD.69.064017
  • Nandi K.K., Zhang Y.Z., Zakharov A.V. Gravitational lensing by wormholes. Physical Review D, 2006, vol. 74, no. 2, p. 024020. https://doi.org/10.1103/PhysRevD.74.024020
  • Muller T. Exact geometric optics in a Morris-Thorne wormhole spacetime. Physical Review D, 2008, vol. 77, no. 4, p. 044043. https://doi.org/10.1103/PhysRevD.77.044043
  • Nakajima K., Asada H. De-ection angle of light in an Ellis wormhole geometry. Physical Review D, 2012, vol. 85, no. 10, p. 107501. https://doi.org/10.1103/PhysRevD.85.107501
  • Tsukamoto N. Strong de-ection limit analysis and gravitational lensing of an Ellis wormhole. Physical Review D, 2016, vol. 94, no. 12, p. 124001. https://doi.org/10.1103/PhysRevD.94.124001
  • Tsukamoto N., Harada T. Light curves of light rays passing through a wormhole. Physical Review D, 2017, vol. 95, no. 2, p. 024030. https://doi.org/10.1103/PhysRevD.95.024030
  • Bronnikov K.A., Baleevskikh K.A. On gravitational lensing by symmetric and asymmetric wormholes. Gravitation and Cosmology, 2019, vol. 25, no. 1, pp. 44-49. https://doi.org/10.1134/S020228931901002X
  • Shaikh R. et al. A novel gravitational lensing feature by wormholes. Physics Letters B, 2019, vol. 789, pp. 270-275. https://doi.org/10.1016/j.physletb.2018.12.030
  • Wang X. et al. Novel shadows from the asymmetric thin-shell wormhole. Physics Letters B, 2020, vol. 811, p. 135930. https://doi.org/10.1016/j.physletb.2020.135930
  • Bugaev M.A. et al. Gravitational lensing and wormhole shadows. Astronomy Reports, 2021, vol. 65, no. 12, pp. 1185-1193. https://doi.org/10.1134/S1063772921120027
  • Jusu K. et al. Constraining Wormhole Geometries using the Orbit of S2 Star and the Event Horizon Telescope, 2021. arXiv:2106.08070 [gr-qc].
  • Nedkova P.G., Tinchev V.K., Yazadjiev S.S. Shadow of a rotating traversable wormhole. Physical Review D, 2013, vol. 88, no. 12, p. 124019. https://doi.org/10.1103/PhysRevD.88.124019
  • Ohgami T., Sakai N. Wormhole shadows in rotating dust. Physical Review D, 2016, vol. 94, no. 6, p. 064071. https://doi.org/10.1103/PhysRevD.94.064071
  • Shaikh R. Shadows of rotating wormholes. Physical Review D, 2018, vol. 98, no. 2, p. 024044. https://doi.org/10.1103/PhysRevD.98.024044
  • Amir M. et al. Shadow images of Kerr-like wormholes. Classical and Quantum Gravity, 2019, vol. 36, no. 21, p. 215007. https://doi.org/10.1088/1361-6382/ab42be
  • Kasuya S., Kobayashi M. Throat e-ects on shadows of Kerr-like wormholes. Physical Review D, 2021, vol. 103, no. 10, p. 104050. https://doi.org/10.1103/PhysRevD.103.104050
  • Rahaman F. et al. Shadows of Lorentzian traversable wormholes. Classical and Quantum Gravity, 2021, vol. 38, no. 21, p. 215007. https://doi.org/10.1088/1361-6382/ac213b
  • Kashargin P.E., Sushkov S.V. Slowly rotating wormholes: the rst-order approximation. Gravitation and Cosmology, 2008, vol. 14, no. 1, pp. 80-85. https://doi.org/10.1134/S0202289308010106
  • Tsukamoto N., Harada T., Yajima K. Can we distinguish between black holes and wormholes by their Einstein-ring systems? Physical Review D, 2012, vol. 86, no. 10, p. 104062. https://doi.org/10.1103/ PhysRevD.86.104062
  • Carter B. Global structure of the Kerr family of gravitational elds. Physical Review, 1968, vol. 174, no. 5, p. 1559. https://doi.org/10.1103/PhysRev.174.1559
  • Bardeen J.M., Press W.H., Teukolsky S.A. Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation. The Astrophysical Journal, 1972, vol. 178, p. 347. https://doi.org/10.1086/151796
  • Vazquez S.E., Esteban E.P. Strong eld gravitational lensing by a Kerr black hole. Nuovo Cimento B, 2004, vol. 119, no. 5, pp. 489-519.
  • Chandrasekhar S. The mathematical theory of black holes. N.Y.: Oxford university press, 1998. 672 p.
  • Bardeen J.M. Timelike and Null Geodesics in the Kerr Metric. Black Holes (Les Astres Occlus), edited by C. Dewitt and B.S. Dewitt, New York, 1973, pp. 215 239.
Еще
Статья научная