Tensor extensions of Lax equations

Автор: Karabanov A.

Журнал: Известия Коми научного центра УрО РАН @izvestia-komisc

Рубрика: Научные статьи

Статья в выпуске: 4 (62), 2023 года.

Бесплатный доступ

The Lax equations dL/dt = [M,L] play an important role in the integrability theory of nonlinear evolution equations and quantum dynamics. In this work, tensor extensions of the Lax equations are suggested with M : V → V and L : Tk(V ) → V , k = 1, 2, . . ., on a complex vector space V . These extensions belong to the generalised class of Lax equations (introduced earlier by Bordemann) dL/dt = ρk(M)L where ρk is a representation of a Lie algebra. The case k = 1, ρ1 = ad corresponds to the usual Lax equations. The extended Lax pairs are studied from the point of view of isomorphic deformations of multilinear structures, conservation laws, exterior algebras and cochain symmetries.

Еще

Lax equations, tensor extensions, multilinear algebra, symmetries

Короткий адрес: https://sciup.org/149143595

IDR: 149143595   |   DOI: 10.19110/1994-5655-2023-4-5-9

Список литературы Tensor extensions of Lax equations

  • Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves / P.D. Lax // Comm. Pure Appl. Math. – 1968. – Vol. 21. – P. 467.
  • Gardner, C.S. Method for solving the Korteweg-deVries equation / C.S. Gardner, J. Green, M. Kruskal, R. Miura // Phys. Rev. Lett. – 1967. – Yol. 19. P. 1095.
  • Zakharov, V.E. Exact theory of two-dimensional self-focusing and one-dimensional self-mofulation of waves in nonlinear media / V.E. Zakharov, A.B. Shabat // Sov. Phys. JETP. – 1972. – Vol. 34. – P. 62.
  • Ablowitz, M.J. Solitons and inverse scattering transform / M.J. Ablowitz, H. Segur. – Philadelphia: SIAM, 1981 – P. 435.
  • Leznov, A.N. Group-theoretical methods for integration of nonlinear dynamical systems / A.N. Leznov, M.V. Saveliev. – Basel, Boston, Berlin: Birkhäuser Verlag, 1992. – 292 p.
  • Toda, M. Theory of nonlinear lattices / M. Toda. – Berlin: Springer, 1989.
  • Bobenko, A.I. The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions / A.I. Bobenko, A.G. Reyman, M.A. Semenov-Tian-Shansky // Commun. Math. Phys. – 1989. – Vol. 122, № 2. – P. 321–354.
  • Bordemann, M. Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups / M. Bordemann // Commun. Math. Phys. – 1990. – Vol. 135. – P. 201–216.
  • Chevalley, C. Cohomology theory of Lie groups and Lie algebras / C. Chevalley, S. Eilenberg // Trans. Amer. Math. Soc. – 1948. – Vol. 63. – P. 85–124.
  • Knapp, A.W. A course in homological algebra / A.W. Knapp. – Berlin, New York: Springer-Verlag, 1997.
  • Karabanov, A. Automorphic algebras of dynamical systems and generalised Inönü-Wigner contractions / A. Karabanov // Proceedings of the Komi Science Centre of the Ural Branch of the Russian Academy of Sciences. Series “Physical and Mathematical Sciences”. – 2022. – № 5 (57). – P. 5–14.
Еще
Статья научная