Теплопроводность аэрогелевой теплоизоляции в стационарных тепловых условиях

Автор: Котлярская Васильева Ирина Леонидовна, Ватин Николай Иванович, Немова Дарья Викторовна

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 5 (103), 2022 года.

Бесплатный доступ

Объектом исследования является теплопроводность аэрогелевой теплоизоляции в стационарных тепловых условиях. Метод. В работе используется экспериментальный метод исследования. Полученные результаты. Определен фактический коэффициент теплопроводности инновационного аэрогелевого наноматериала в виде рулонного утеплителя. Он равен 0,0227 Вт/(м*К). Это значение находится в пределах погрешности. Среди теплоизоляционных материалов на строительном рынке самым низким коэффициентом теплопроводности выделяется материал Alison Airgel Blanket DRT06-Z.

Аэрогель, теплопроводность, теплоизоляция, наноматериал, энергоэффективность

Короткий адрес: https://sciup.org/143179863

IDR: 143179863   |   DOI: 10.4123/CUBS.103.3

Список литературы Теплопроводность аэрогелевой теплоизоляции в стационарных тепловых условиях

  • Vasileva, I.L., Nemova, D.V. Prospects of using aerogels in construction. AlfaBuild. 2018. 6(4). Pp. 135–145. DOI:10.34910/ALF.6.12. URL: https://alfabuild.spbstu.ru/article/2018.6.12 (date of application: 13.10.2022).
  • Fedotov, V.V., Semenov, K.V., Dobrogorskaya, L.V., Videnkov, N.V., Makeeva, A.V. Aerogel- based innovative materials in civil engineering. AlfaBuild. 2017. 1(1). Pp. 89–98. DOI:10.34910/ALF.1.7. URL: https://alfabuild.spbstu.ru/article/2017.1.7 (date of application: 13.10.2022).
  • Reim, M., Reichenauer, G., Körner, W., Manara, J., Arduini-Schuster, M., Korder, S., Beck, A., Fricke, J. Silica-aerogel granulate - Structural, optical and thermal properties. Journal of Non- Crystalline Solids. 2004. 350. Pp. 358–363. DOI:10.1016/j.jnoncrysol.2004.06.048.
  • Soleimani Dorcheh, A., Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology. 2008. 199(1). Pp. 10–26. DOI:10.1016/J.JMATPROTEC.2007.10.060.
  • Wei, G., Liu, Y., Zhang, X., Yu, F., Du, X. Thermal conductivities study on silica aerogel and its composite insulation materials. International Journal of Heat and Mass Transfer. 2011. 54(11–12). Pp. 2355–2366. DOI:10.1016/j.ijheatmasstransfer.2011.02.026.
  • Lamy-Mendes, A., Pontinha, A.D.R., Alves, P., Santos, P., Durães, L. Progress in silica aerogel- containing materials for buildings’ thermal insulation. Construction and Building Materials. 2021. 286. Pp. 122815. DOI:10.1016/J.CONBUILDMAT.2021.122815.
  • He, F., Wang, Y., Zheng, W., Wu, J.Y., Huang, Y.H. Effective thermal conductivity model of aerogel thermal insulation composite. International Journal of Thermal Sciences. 2022. 179. Pp. 107654. DOI:10.1016/J.IJTHERMALSCI.2022.107654.
  • Laskowski, J., Milow, B., Ratke, L. Aerogel-aerogel composites for normal temperature range thermal insulations. Journal of Non-Crystalline Solids. 2016. 441. Pp. 42–48. DOI:10.1016/J.JNONCRYSOL.2016.03.020.
  • Liu, Z. hui, Wang, F., Deng, Z. ping. Thermal insulation material based on SiO2 aerogel. Construction and Building Materials. 2016. 122. Pp. 548–555. DOI:10.1016/j.conbuildmat.2016.06.096.
  • Yan, Q., Feng, Z., Luo, J., Xia, W. Preparation and characterization of building insulation material based on SiO2 aerogel and its composite with expanded perlite. Energy and Buildings. 2022. 255. Pp. 111661. DOI:10.1016/J.ENBUILD.2021.111661.
  • Elshazli, M.T., Mudaqiq, M., Xing, T., Ibrahim, A., Johnson, B., Yuan, J. Experimental study of using Aerogel insulation for residential buildings. https://doi.org/10.1080/17512549.2021.2001369. 2021. 16(5). Pp. 569–588. DOI:10.1080/17512549.2021.2001369.URL:https://www.tandfonline.com/doi/abs/10.1080/17512549.2021.2001369 (date of application: 13.10.2022).
  • Mishra, R., Behera, B.K., Muller, M., Petru, M. Finite element modeling based thermodynamic simulation of aerogel embedded nonwoven thermal insulation material. International Journal of Thermal Sciences. 2021. 164. Pp. 106898. DOI:10.1016/J.IJTHERMALSCI.2021.106898.
  • Baetens, R., Jelle, B.P., Gustavsen, A. Aerogel insulation for building applications: A state-of-the- art review. Energy and Buildings. 2011. 43(4). Pp. 761–769. DOI:10.1016/j.enbuild.2010.12.012.
  • Thermal insulation Alison Blanket DRT06-Z — TIM . URL: https://tim- firm.ru/catalog/alison/alisonaerogelblanketdrt06/ (date of application: 12.10.2022).
  • Device for measuring the coefficient of thermal conductivity PIT-2.1. URL: https://www.iztech.ru/izmeriteli_teploprovodnosti/izmeritel_teploprovodnosti_PIT-2_1/ (date of application: 13.10.2022).
  • Hung Anh, L.D., Pásztory, Z. An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering. 2021. 44. Pp. 102604. DOI:10.1016/J.JOBE.2021.102604.
  • Abu-Jdayil, B., Mourad, A.H., Hittini, W., Hassan, M., Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials. 2019. 214. Pp. 709–735. DOI:10.1016/J.CONBUILDMAT.2019.04.102.
  • Villasmil, W., Fischer, L.J., Worlitschek, J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renewable and Sustainable Energy Reviews.2019. 103. Pp. 71–84. DOI:10.1016/J.RSER.2018.12.040.
  • Berardi, U., Sprengard, C. An overview of and introduction to current researches on super insulating materials for high-performance buildings. Energy and Buildings. 2020. 214. DOI:10.1016/J.ENBUILD.2020.109890.
  • Zubarev, K., Gagarin, V. Mathematical Modeling of Heat and Moisture Regimes of Building for the Facade Thermal Insulation Composite System with Mineral Wool Insulation. Smart Innovation, Systems and Technologies. 2022. 247. Pp. 625–634. DOI:10.1007/978-981-16-3844- 2_54/COVER. URL: https://link.springer.com/chapter/10.1007/978-981-16-3844-2_54 (date of application: 8.10.2022).
  • Vatin, N., Sultanov, S., Krupina, A. Comparison of Thermal Insulation Characteristics of PIR, Mineral Wool, Carbon Fiber, and Aerogel. Advances in Intelligent Systems and Computing. 2019. 983. Pp. 877–883. DOI:10.1007/978-3-030-19868-8_86/COVER. URL: https://link.springer.com/chapter/10.1007/978-3-030-19868-8_86 (date of application: 8.10.2022).
  • Gorelik, P.I., Zolotova, J.S. Modern thermal insulation materials and some features of their application. Construction of Unique Buildings and Structures. 2014. 18(3). Pp. 93–103. DOI:10.18720/CUBS.18.8. URL: https://unistroy.spbstu.ru/article/2014.18.8 (date of application: 8.10.2022).
  • Lv, D., Wang, J. Construction methods of the extruded polystyrene foam board in the exterior wall external insulation. Proceedings - 3rd International Conference on Information Management, Innovation Management and Industrial Engineering, ICIII 2010. 2010. 3. Pp. 648–651. DOI:10.1109/ICIII.2010.475.
  • Li, X., Peng, C., Liu, L. Experimental study of the thermal performance of a building wall with vacuum insulation panels and extruded polystyrene foams. Applied Thermal Engineering. 2020. 180. Pp. 115801. DOI:10.1016/J.APPLTHERMALENG.2020.115801.
  • Chen, Z., Liu, T. Development and Application Status of Glass Wool, Rock Wool, and Ceramic Wool. Green Energy and Technology. 2022. Pp. 129–161. DOI:10.1007/978-3-030-98693- 3_5/COVER. URL: https://link.springer.com/chapter/10.1007/978-3-030-98693-3_5 (date of application: 9.10.2022).
  • Laushkina, E., Radaeva, V. Thickness of insulation layer in the rainscreen system depending on the region. Construction of Unique Buildings and Structures. 2018. 65(2). Pp. 7–19. DOI:10.18720/CUBS.65.1. URL: https://unistroy.spbstu.ru/article/2018.65.1 (date of application: 9.10.2022).
  • Kramarenko A.V., Kartashev V.K., Shamota M.A. Ecowool as a promising cellulosic material for external insulation of building structures. Prospects of science. 2018. Pp. 84–86. URL: https://www.elibrary.ru/item.asp?id=37283838 (date of application: 9.10.2022).
  • Caliskan, U., Apalak, M.K. Bending impact behaviour of sandwich beams with expanded polystyrene foam core: Analysis. Journal of Sandwich Structures and Materials. 2019. 21(1). Pp. 230–259. DOI:10.1177/1099636216689545/ASSET/IMAGES/LARGE/10.1177_1099636216689545- FIG2.JPEG. URL: https://journals.sagepub.com/doi/10.1177/1099636216689545 (date of application: 9.10.2022).
  • Moghaddam Fard, P., Alkhansari, M.G. Innovative fire and water insulation foam using recycled plastic bags and expanded polystyrene (EPS). Construction and Building Materials. 2021. 305. Pp. 124785. DOI:10.1016/J.CONBUILDMAT.2021.124785.
  • Dissanayake, D.M.K.W., Jayasinghe, C., Jayasinghe, M.T.R. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy and Buildings. 2017. 135. Pp. 85–94. DOI:10.1016/J.ENBUILD.2016.11.044.
  • Makaveckas, T., Bliudz Ius, R. The influence of polyisocyanurate (PIR) facing on the heat transfer through the corners of insulated building partitions. E3S Web of Conferences. 2020. 172. Pp. 08008. DOI:10.1051/E3SCONF/202017208008. URL: https://www.e3s- conferences.org/articles/e3sconf/abs/2020/32/e3sconf_nsb2020_08008/e3sconf_nsb2020_0800 8.html (date of application: 12.10.2022).
  • Makaveckas, T., Bliūdžius, R., Burlingis, A. The Influence of Different Facings of Polyisocyanurate Boards on Heat Transfer through the Wall Corners of Insulated Buildings. Energies 2020, Vol. 13, Page 1991. 2020. 13(8). Pp. 1991. DOI:10.3390/EN13081991. URL: https://www.mdpi.com/1996- 1073/13/8/1991/htm (date of application: 12.10.2022).
Еще
Статья научная