Тепловой баланс высотного здания со светопрозрачным модульным остеклением
Автор: Горшков Р.А., Немова Д.В., Андреева Тарасова Д.С., Черкашин А.В.
Журнал: Строительство уникальных зданий и сооружений @unistroy
Статья в выпуске: 4 (109), 2023 года.
Бесплатный доступ
Светопрозрачные фасады широко применяются в современной архитектуре, особенно в офисных зданиях. Учет стратегий использования энергии и тепловых характеристик на начальном этапе проектирования выгоден для эксплуатационных характеристик здания. Объектом исследования являются светопрозрачные остекленные фасады высотных зданий. Целью исследования является разработка методики расчета и оценки тепловых характеристик высотного здания с светопрозрачным модульным остеклением в холодное время года.
Высотные здания, ограждающая конструкция, теплопередача, фасады, тепловой баланс, энергоэффективность, тепловые характеристики
Короткий адрес: https://sciup.org/143182698
IDR: 143182698 | DOI: 10.4123/CUBS.109.5
Список литературы Тепловой баланс высотного здания со светопрозрачным модульным остеклением
- Palladio A. Four books about architecture. AST, 2021. 384 p. https://www.moscowbooks.ru/book/1078871/
- Potkina I. V. (2015) Arhitektor i zakazchik: k istorii stroitel'stva zdaniya "kompanii Zinger" v Peterburge. Istoricheskij zhurnal: nauchnye issledovaniya. 1, 88-98. https://doi.org/10.7256/2222-1972.2015.1.15619
- Zolotareva M.V. (2015) Principy prostranstvennogo razvitiya vysotnogo zonirovaniya centra Sankt-Peterburga. ZHilishchnoe stroitel'stvo, 11, 27-31. https://www.elibrary.ru/item.asp?id=25032002
- Araújo, G.R., Teixeira, H., Gomes, M.G. and Rodrigues, A.M. (2023) Multi-Objective Optimization of Thermochromic Glazing Properties to Enhance Building Energy Performance. Solar Energy, Elsevier Ltd, 249, 446–456. https://doi.org/10.1016/j.solener.2022.11.043.
- Gorshkov A.S., Livchak V.I. (2015) Istoriya, evolyuciya i razvitie normativnyh trebovanij k ograzhdayushchim konstrukciyam. Construction of Unique Buildings and Structures, No 3(30), 7-37. https://doi.org/10.18720/CUBS.30.1
- Liu, M., Wittchen, K.B., Heiselberg, P.K. and Winther, F.V. (2014) Development and Sensitivity Study of a Simplified and Dynamic Method for Double Glazing Facade and Verified by a Full-Scale Façade Element. Energy and Buildings, Elsevier, 68, 432–443. https://doi.org/10.1016/J.ENBUILD.2013.03.056.
- Hien, W.N., Liping, W., Chandra, A.N., Pandey, A.R. and Xiaolin, W. (2005) Effects of Double Glazed Facade on Energy Consumption, Thermal Comfort and Condensation for a Typical Office Building in Singapore. Energy and Buildings, 37, 563–572. https://doi.org/10.1016/j.enbuild.2004.08.004.
- Flores Larsen, S., Rengifo, L. and Filippín, C. (2015) Double Skin Glazed Façades in Sunny Mediterranean Climates. Energy and Buildings, Elsevier Ltd, 102, 18–31. https://doi.org/10.1016/j.enbuild.2015.05.019.
- Colombo, E., Zwahlen, M., Frey, M. and Loux, J. (2017) Design of a Glazed Double-Façade by Means of Coupled CFD and Building Performance Simulation. Energy Procedia, Elsevier Ltd, 122, 355–360. https://doi.org/10.1016/j.egypro.2017.07.337.
- Liu, C., Zhang, G., Arıcı, M., Bian, J. and Li, D. (2019) Thermal Performance of Non-Ventilated Multilayer Glazing Facades Filled with Phase Change Material. Solar Energy, Pergamon, 177, 464–470. https://doi.org/10.1016/J.SOLENER.2018.11.044.
- Inan, T., Başaran, T. and Ezan, M.A. (2016) Experimental and Numerical Investigation of Natural Convection in a Double Skin Facade. Applied Thermal Engineering, Elsevier Ltd, 106, 1225–1235. https://doi.org/10.1016/j.applthermaleng.2016.06.124.
- Khalvati, F. and Omidvar, A. (2019) Summer Study on Thermal Performance of an Exhausting Airflow Window in Evaporatively-Cooled Buildings. Applied Thermal Engineering, Elsevier Ltd, 153, 147–158. https://doi.org/10.1016/j.applthermaleng.2019.02.135.
- Aver'yanov V.K., Gorshkov A.S., Vasil'ev G.P. (2018) Povyshenie effektivnosti centralizovannogo teplosnabzheniya sushchestvuyushchego zhilogo fonda. Vestnik grazhdanskih inzhenerov, 6 (71), 99-111. https://doi.org/10.23968/1999-5571-2018-15-6-99-111
- Aver'yanov V. K., YUferev YU. V., Melezhik A. A., Gorshkov A. S. (2018) Teplosnabzhenie gorodov v kontekste razvitiya aktivnyh potrebitelej intellektual'nyh energeticheskih sistem. Academia. Arhitektura i stroitel'stvo, 1, 78-87. https://doi.org/10.22337/2077-9038-2018-1-78-87
- Vatin N.I., Velichkin V.Z., Gorshkov A.S., Pestryakov I.I., Peshkov A.A., Nemova D.V., Kiski S.S. (2013) Album of technical solutions for the application of heat insulating products from polyurethane foam trademark "spu-insulation" in the construction of residential, public and industrial building. Construction of Unique Buildings and Structures, 3 (8), 1-264. https://doi.org/10.18720/CUBS.8.8
- Gorshkov A.S., Vatin N.I., Dacyuk T.A., Bezrukov A.YU., Nemova D.V., Kakula P., Viitanen A. (2014) Album of technical solutions for the application of polyurethane foam thermal insulation products in construction of residential, public and industrial buildings // Construction of Unique Buildings and Structures. 5 (20), 71-441. https://doi.org/10.18720/CUBS.20.7
- Gorshkov A.S., Sokolov N.A. (2013) Inconsistency in Russian and international standards in the determination of the design values of thermal conductivity of building materials and products. Magazine of Civil Engineering. 7 (42). 7-14. https://doi.org/10.5862/MCE.42.2
- Vatin N.I., Nemova D.V., Rymkevich P.P., Gorshkov A.S. (2012) Influence of building envelope thermal protection on heat loss value in the building. Magazine of Civil Engineering. 8 (34). 4-14. https://doi.org/10.5862/MCE.34.1
- Gorshkov A.S. (2010) The energy efficiency in the field of construction: questions of norms and standarts and solutions for the reduction of energy consumption at buildings. Magazine of Civil Engineering. 1 (11). 9-13. https://doi.org/10.18720/MCE.11.2
- Spiridonov A.V., Shubin I.L. (2014) Development of translucent structures in Russia. Light & Engineering. 22 (3). 78-85. https://www.researchgate.net/publication/295569865_Development_of_translucent_structures_in_Russia
- Spiridonov A.V., Shubin I.L., Osipov V.I. (2014) Development of fenestration in Russia: status and prospects. Glass and Ceramics. 70 (9-10). 374-379. https://doi.org/10.1007/s10717-014-9583-4
- Gorshkov, A.S., Kabanov, M.S. and Yuferev, Y. V. (2021) Analysis of Thermal Loads and Specific Consumption of Thermal Energy in Apartment Buildings. Thermal Engineering , Pleiades journals, 68, 654–661. https://doi.org/10.1134/S0040601521050050/METRICS.
- Li, D., Ma, T., Liu, C., Zheng, Y., Wang, Z. and Liu, X. (2016) Thermal Performance of a PCM-Filled Double Glazing Unit with Different Optical Properties of Phase Change Material. Energy and Buildings, Elsevier Ltd, 119, 143–152. https://doi.org/10.1016/j.enbuild.2016.03.036.
- Faraj, K., Khaled, M., Faraj, J., Hachem, F. and Castelain, C. (2023) Phase Change Materials (PCMs) in Buildings. Multifunctional Phase Change Materials: Fundamentals, Properties and Applications, Elsevier, 507–567. https://doi.org/10.1016/B978-0-323-85719-2.00003-1.
- Duraković, B., Halilović, M. and Ali, H.M. (2023) Phase Change Materials Applications in Buildings. Phase Change Materials for Heat Transfer, Elsevier, 225–248. https://doi.org/10.1016/B978-0-323-91905-0.00005-8.
- Varlamov, N. V., Gorshkov, A.S., Yuferev, Y. V., Lezer, A.Y., Zhirnov, A.E. and Parashchenko, N.A. (2023) The Heat-Storage Capacity of the Lakhta Center Multifunctional Complex Tower Building. Thermal Engineering , Pleiades Publishing, 70, 32–40. https://doi.org/10.1134/S0040601523010081/METRICS.
- Dubinskij S.I. (2008) CHislennoe modelirovanie vetrovyh vozdejstvij na kompleks "Federaciya" "Moskva-siti". Mezhdunarodnyj zhurnal po raschetu grazhdanskih i stroitel'nyh konstrukcij 4(2), 58-59. https://www.elibrary.ru/item.asp?id=14932316
- Avdonina, L., Alekhin, V. and Galiev, D. (2018) Innovative Solutions Implemented in Design of Iset Tower. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 451, 012049. https://doi.org/10.1088/1757-899X/451/1/012049.
- Aflaki, A., Mahyuddin, N., Al-Cheikh Mahmoud, Z. and Baharum, M.R. (2015) A Review on Natural Ventilation Applications through Building Façade Components and Ventilation Openings in Tropical Climates. Energy and Buildings, Elsevier Ltd, 101, 153–162. https://doi.org/10.1016/j.enbuild.2015.04.033.
- Pourshab, N., Tehrani, M.D., Toghraie, D. and Rostami, S. (2020) Application of Double Glazed Façades with Horizontal and Vertical Louvers to Increase Natural Air Flow in Office Buildings. Energy, Elsevier Ltd, 200. https://doi.org/10.1016/j.energy.2020.117486.
- Saleem, A.A., Bady, M., Ookawara, S. and Abdel-Rahman, A.K. (2016) Achieving Standard Natural Ventilation Rate of Dwellings in a Hot-Arid Climate Using Solar Chimney. Energy and Buildings, Elsevier Ltd, 133, 360–370. https://doi.org/10.1016/j.enbuild.2016.10.001.
- Pomponi, F., Piroozfar, P.A.E., Southall, R., Ashton, P. and Farr, E.R.P. (2016) Energy Performance of Double-Skin Façades in Temperate Climates: A Systematic Review and Meta-Analysis. Renewable and Sustainable Energy Reviews, Elsevier Ltd, 54, 1525–1536. https://doi.org/10.1016/j.rser.2015.10.075.
- Marques da Silva, F., Gomes, M.G. and Rodrigues, A.M. (2015) Measuring and Estimating Airflow in Naturally Ventilated Double Skin Facades. Building and Environment, Elsevier Ltd, 87, 292–301. https://doi.org/10.1016/j.buildenv.2015.02.005.
- de Gracia, A., Navarro, L., Castell, A. and Cabeza, L.F. (2015) Energy Performance of a Ventilated Double Skin Facade with PCM under Different Climates. Energy and Buildings, Elsevier Ltd, 91, 37–42. https://doi.org/10.1016/j.enbuild.2015.01.011.
- Cao, X., Dai, X. and Liu, J. (2016) Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings during the Past Decade. Energy and Buildings, Elsevier Ltd, 128, 198–213. https://doi.org/10.1016/j.enbuild.2016.06.089.
- Bitaab, M., Hosseini Abardeh, R. and Movahhed, S. (2020) Experimental and Numerical Study of Energy Loss through Double-Glazed Windows. Heat and Mass Transfer/Waerme- und Stoffuebertragung, Springer Science and Business Media Deutschland GmbH, 56, 727–747. https://doi.org/10.1007/S00231-019-02729-4.
- Krstić-Furundžić, A., Vujošević, M. and Petrovski, A. (2019) Energy and Environmental Performance of the Office Building Facade Scenarios. Energy, Elsevier Ltd, 183, 437–447. https://doi.org/10.1016/j.energy.2019.05.231.
- Fu, Y., Xu, W., Wang, Z., Zhang, S., Chen, X. and Chu, J. (2023) Experimental Investigation on Thermal Characteristics and Novel Thermal Estimation Method of BIPV Façade Air Channel under Actual Operation. Journal of Building Engineering, Elsevier, 72, 106489. https://doi.org/10.1016/J.JOBE.2023.106489.
- Claros-Marfil, L.J., Zetola, V., Padial, J.F. and Lauret, B. (2022) Experimental-Simulation Methodology for Estimation of Thermal Parameters of Adaptive Facades in Mild Climate Conditions: A Water-Flow Glazing Case Study. Journal of Building Engineering, Elsevier, 45, 103384. https://doi.org/10.1016/J.JOBE.2021.103384.
- Infield, D., Mei, L. and Eicker, U. (2004) Thermal Performance Estimation for Ventilated PV Facades. Solar Energy, Pergamon, 76, 93–98. https://doi.org/10.1016/J.SOLENER.2003.08.010.
- Hwang, R.L. and Chen, W.A. (2022) Creating Glazed Facades Performance Map Based on Energy and Thermal Comfort Perspective for Office Building Design Strategies in Asian Hot-Humid Climate Zone. Applied Energy, Elsevier Ltd, 311. https://doi.org/10.1016/J.APENERGY.2022.118689.
- Elarga, H., Goia, F., Zarrella, A., Dal Monte, A. and Benini, E. (2016) Thermal and Electrical Performance of an Integrated PV-PCM System in Double Skin Façades: A Numerical Study. Solar Energy, Elsevier Ltd, 136, 112–124. https://doi.org/10.1016/j.solener.2016.06.074.
- Varlamov N.V., Gorshkov A.S., YUferev YU.A., Lezer A.YU., ZHirnov A.E., Parashchenko N.A. (2023) Teploakkumuliruyushchaya sposobnost' zdaniya bashni mnogofunkcional'nogo kompleksa «Lahta centr». Teploenergetika. 1. 40-49. https://doi.org/10.56304/S0040363623010083.