Терапия ксеногенным протеомным комплексом из эмбриональных клеток головного мозга тормозит прогрессирование экспериментально вызванной хронической почечной недостаточности
Автор: Кирпатовский В.И., Сивков А.В., Соколов М.А., Голованов С.А., Дрожжева В.В., Синюхин В.Н., Фролова Е.В., Аполихин О.И., Каприн А.Д.
Журнал: Экспериментальная и клиническая урология @ecuro
Рубрика: Экспериментальная урология
Статья в выпуске: 3 т.16, 2023 года.
Бесплатный доступ
Введение. В ранее опубликованных экспериментальных исследованиях нами было показано, что у крыс с предварительно смоделированной острой постишемической почечной недостаточностью терапия белково-пептидным комплексом, выделенным из стволовых и прогениторных клеток головного мозга эмбрионов свиней, оказывает значимый терапевтический эффект, уменьшая выраженность функциональных и гистологических нарушений, препятствуя переходу патологического процесса в хроническую болезнь почек. Данное исследование посвящено оценке эффективности влияния этой терапии на течение искусственно вызванной хронической почечной недостаточности (ХПН) у крыс. Материал и методы. Опыты проведены на 45 белых беспородных крысах-самцах массой 200-240 г. ХПН моделировали путем односторонней нефрэктомии и резекции обоих полюсов оставшейся почки, что уменьшало массу функционирующей паренхимы на 80%. В 1-й серии опытов никакой терапии не проводили, во 2-4-й сериях животным внутрибрюшинно вводили фракционированный ксеногенный протеомный комплекс (секретом) стволовых и прогениторных клеток головного мозга эмбрионов свиньи (ССПК) в ежедневной дозе 0,1 мл в разных режимах: два 10-дневных курса с 10-дневным перерывом между ними (2-я серия), увеличение первого курса до 20 дней и повторный 10-дневный курс через 10 дней (3-я серия) и непрерывная терапия в течение 30 дней (4-я серия). 5 серия - интактные животные. Оценку эффективности терапии проводили на основании выраженности развития компенсаторной гипертрофии почки, по динамике биохимических показателей функции почки, активности ферментов (аспартатаминотрансфераза - АСТ, аланинаминотрансфераза - АЛТ, лактатдегидрогеназа - ЛДГ, щелочная фосфатаза - ЩФ) в крови и моче и уровню уремических нейротоксинов 3-индоксил сульфата и р-толил сульфата в крови.
Хроническая болезнь почек, протеомный комплекс, терапия, стволовые клетки, секретом, уремические токсины
Короткий адрес: https://sciup.org/142240016
IDR: 142240016 | DOI: 10.29188/2222-8543-2023-16-3-26-37
Список литературы Терапия ксеногенным протеомным комплексом из эмбриональных клеток головного мозга тормозит прогрессирование экспериментально вызванной хронической почечной недостаточности
- Perico N, Remuzzi G. Chronic kidney disease: a research and public health priority. Nephrol Dial Transplant 2012;27(Suppl 3):iii19–26. https://doi.org/10.1093/ ndt/gfs284.
- Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382(9888):260–72. https://doi.org/10.1016/S0140-6736(13)60687-X.
- Tögel FE, Westenfelder C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 2012;60(6):1012–22. https://doi.org/10.1053/j.ajkd.2012.08.034.
- Pan B. Fan G. Stem cell-based treatment of kidney diseases. Exp Biol Med 2020;245(10):902–10. https://doi.org/10.1177/1535370220915901.
- Torrico S, Hotter G, Játiva S. Development of cell therapies for renal disease and regenerative medicine. Int J Mol Sci 2022;23(24):15943. https://doi.org/10.3390/ijms232415943.
- Jeong JO, Han JW, Kim JM, Cho HJ, Park C, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011;108(11):1340–7. https://doi.org/10.1161/CIRCRESAHA.110.239848.
- Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011;9:29. https://doi.org/10.1186/1479-5876-9-29.
- Hickson LJ, Eirin A, Lerman LO. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016;89(4):767-78. https://doi.org/10.1016/j.kint.2015.11.023.
- Tran C, Damaser MS. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015;82-83:1-11. https://doi.org/10.1016/j.addr.2014.10.007.
- van Koppen A, Joles JA, van Balkom BWM, Lim SK, de Kleijn D, Giles RH, et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE 2012;7(6):e38746. https://doi.org/10.1371/journal.pone.0038746.
- Maeshima A, Nakasatomi M, Nojima Y. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. Biomed Res Int 2014;2014:595493. https://doi.org/10.1155/2014/595493.
- Кирпатовский В.И., Сивков А.В., Голованов С.А., Дрожжева В.В., Самойлова С.И., Рабинович Э.З., и др. Профилактика развития острой постишемической почечной недостаточности с использованием белково-пептидного комплекса эмбриональной ткани. Экспериментальная и клиническая урология 2019;(3):32-9. [Kirpatovskiy V.I., Sivkov A.V., Golovanov S.A., Drozhzheva V.V., Samoylova S.I., Rabinovich E.Z., et al. Prevention of the development of acute post-ishemic renal insufficiency using a protein-peptide complex of embryonal tissue. Eksperimentalnaya i Klinicheskaya urologiya = Experimental and Clinical Urology 2019;(3):32-9. (In Russian)]. https://doi.org/10.29188/2222-8543-2019-11-3-26-31.
- Кирпатовский В.И., Сивков А.В., Ефремов Г.Д., Самойлова С.И., Фролова Е.В., Аполихин О.И. Применение ксеногенного фракционированного протеомного секретома стволовых и прогениторных клеток при остром ишемическом повреждении почек в эксперименте. Экспериментальная и клиническая урология 2022;15(1):10-9. [Kirpatovskiy V.I., Sivkov A.V., Efremov G.D, Samojlova S.I., Frolova E.V., Apolikhin O.I. Experimental application of xenogenic fractionated proteomic secretome of stem and progenitor cells in acute ischemic kidney injury. Eksperimentalnaya i Klinicheskaya urologiya = Experimental and Clinical Urology 2022;15(1):10-9. (In Russian)]. https://doi.org/10.29188/2222-8543-2022-15-1-10-19.
- Кирпатовский В.И, Орлова Е.В., Харламова Л.А., Голованов С.А., Дрожжева В.В., Фролова Е.В. Значимость динамического определения концентрации Цистатина С в крови как маркера риска перехода острого повреждения почек в хроническую почечную недостаточность и эффективности нефропротективной терапии. Экспериментальная и клиническая урология 2021;14(4):20-9. [Kirpatovskiy V.I., Orlova E.V., Kharlamova L.A., Golovanov S.A., Drozhzheva V.V., Frolova E.V. The significance of dynamic detection of cystatin c concentration in the blood as a marker of the risk of transition of acute kidney injury to chronic renal failure and the effectiveness of nephroprotective therapy. Eksperimentalnaya i Klinicheskaya urologiya = Experimental and Clinical Urology 2021;14(4):20-9. (In Russian)]. https://doi.org/10.29188/2222-8543-2021-14-4-20-29.
- Синюхин В.Н., Рабинович Э.З., Соколов М.А., Сивков А.В. Неврологические расстройства при хронической болезни почек. Экспериментальная и клиническая урология 2017;(2):92-101. [Sinjuhin V.N., Rabinovich E.Z., Sokolov M.A., Sivkov A.V. Neurological disorders in patients with chronic kidney disease. Eksperimentalnaya i Klinicheskaya urologiya = Experimental and Clinical Urology 2017;(2):92-101. (In Russian)].
- Watanabe K, Watanabe T, Nakayama M. Cerebrorenal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 2014;44:184–93. https://doi.org/10.1016/j.neuro.2014.06.014.
- Yabuuchi N, Sagata M, Saigo C, Yoneda G, Yamamoto Y, Nomura Y, et al. Indoxyl sulfate as a mediator involved in dysregulation of pulmonary aquaporin-5 in acute lung injury caused by acute kidney injury. Int J Mol Sci 2017;18(1):11. https://doi.org/10.3390/ijms18010011.
- Yaffe K, Kurella-Tamura M, Ackerson L, Hoang TD, Anderson AH, Duckworth M, et al. Higher levels of cystatin C are associated with worse cognitive function in older adults with chronic kidney disease: the chronic renal insufficiency cohort cognitive study. J Am Geriatr Soc 2014;62(9):1623-9. https://doi.org/10.1111/jgs.12986.
- Федеральный закон от 23 июня 2016 г. N 180-ФЗ «О биомедицинских клеточных продуктах» Вступил в силу в РФ c 1 января 2017 года; часть 2 и пункт 2 части 5 статьи 35 вступили в силу с 1 января 2018 года, как «Закон о БМКП». [Federal'nyy zakon ot 23 iyunya 2016 g. N 180-FZ «O biomeditsinskikh kletoch-nykh produktakh» Vstupil v silu v RF c 1 yanvarya 2017 goda; chast' 2 i punkt 2 chasti 5 stat'i 35 vstupili v silu s 1 yanvarya 2018 goda, kak «Zakon o BMKP». = Federal Law No. 180-FZ of June 23, 2016 «On Biomedical Cellular Products» Entered into force in the Russian Federation on January 1, 2017; part 2 and paragraph 2 of part 5 of Article 35 entered into force on January 1, 2018, as the «Law on the BMCP». (In Russian)].
- Федеральный закон от 03.08.2018 N 323-ФЗ «О внесении изменений в отдельные законодательные акты РФ по вопросу обращения биомедицинских клеточных продуктов». [Federal'nyy zakon ot 03.08.2018 N 323-FZ «O vnesenii izmeneniy v otdel'nyye zakonodatel'nyye akty RF po voprosu obrashcheniya biomeditsinskikh kletochnykh produktov» = Federal Law No. 323-FZ of August 3, 2018 «On Amendments to Certain Legislative Acts of the Russian Federation on the Issue of Circulation of Biomedical Cellular Products». (In Russian)].
- Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 2020;11(1):377. https://doi.org/10.1186/s13287-020-01895-1.
- Rota C, Morigi M, Cerullo D, Introna M, Colpani O, Corna D, et al. Therapeutic potential of stromal cells of non-renal or renal origin in experimental chronic kidney disease. Stem Cell Res Ther 2018;9(1):220. https://doi.org/10.1186/s13287-018-0960-8.
- Hu J, Zhu Q, Li PL, Wang W, Yi F, Li N. Stem cell conditioned culture media attenuated albumin-induced epithelial-mesenchymal transition in renal tubular cells. Cell Physiol Biochem 2015;35(5):1719-28. https://doi.org/10.1159/000373984.
- Kepecs DM, Yuen DA, Zhang Y, Thai K, Connelly KA, Gilbert RE. Progenitor cell secretory products exert additive renoprotective effects when combined with ace inhibitors in experimental CKD. J Renin Angiotensin Aldosterone Syst 2016;17(3). https://doi.org/10.1177/1470320316668434.
- Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 2011;6(3):206–14. https://doi.org/10.1016/j.scr.2011.01.001.
- Birtwistle L, Chen XM, Pollock C. Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury. Int J Mol Sci 2021;22(12):6596. https://doi.org/10.3390/ijms22126596.
- Cao Q, Huang C, Chen XM, Pollock CA. Mesenchymal stem cell-derived exosomes: toward cell-free therapeutic strategies in chronic kidney disease. Front Med (Lausanne) 2022;9:816656. https://doi.org/10.3389/fmed.2022.816656.
- Lu Y, Wang L, Zhang M, Chen Z. Mesenchymal stem cell-derived small extracellular vesicles: a novel approach for kidney disease treatment. Int J Nanomedicine 2022;17:3603-18. https://doi.org/10.2147/IJN.S372254.
- Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020;5(1):9. https://doi.org/10.1038/ s41392-020-0106-1.
- Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007;292(5):F1626–35. https://doi.org/10.1152/ajprenal.00339.2006.
- Zarjou A, Kim J, Traylor AM, Sanders PW, Balla J, Agarwal A, et al. Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1. Am J Physiol Renal Physiol 2011;300(1):F254–62. https://doi.org/10.1152/ajprenal.00594.2010
- Cho KS, Ko IK, Yoo JJ. Bioactive compounds for the treatment of renal disease. Yonsei Med J 2018;59(9):1015-25. https://doi.org/10.3349/ymj.2018.59.9.1015.
- Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 1996;49(6):1774-7. https://doi.org/10.1038/ki.1996.265.
- Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 1981;241(1):F85-93. https://doi.org/10.1152/ ajprenal.1981.241.1.F85.
- Eirin A, Lerman LO. Mesenchymal stem/stromal cell-derived extracellular vesicles for chronic kidney disease: Are we there yet? Hypertension 2021;78(2):261-9. https://doi.org/10.1161/HYPERTENSIONAHA.121.14596.
- Gao Z, Zhang C, Peng F, Chen Q, Zhao Y, Chen L, et al. Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation. Stem Cell Res Ther 2022;13(1):191. https://doi.org/10.1186/s13287-022-02861-9.
- Yuen DA, Connelly KA, Zhang Y, Advani SL, Thai K, Kabir G, et al. Early outgrowth cells release soluble endocrine antifibrotic factors that reduce progressive organ fibrosis. Stem Cells 2013;31(11):2408-19. https://doi.org/10.1002/ stem.1502.
- Lim, Y.J. Sidor, N.A.Tonial, N.C. Che, A. Urquhart, B.L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins 2021;13(2):142. https://doi.org/10.3390/ toxins13020142.
- Madero M, Cano KB, Campos I, Tao X, Maheshwari V, Brown J, et al. Removal of protein-bound uremic toxins during hemodialysis using a binding competitor. Clin J Am Soc Nephrol 2019;14(3):394–402. https://doi.org/10.2215/ CJN.05240418.
- Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. A. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012;23(7):1258–70. https://doi.org/ 10.1681/ASN.2011121175.
- Iwata K, Watanabe H, Morisaki T, Matsuzaki T, Ohmura T, Hamada A. et al. Involvement of indoxyl sulfate in renal and central nervous system toxicities during cisplatin-induced acute renal failure. Pharm Res 2007;24(4):662-71. https://doi.org/10.1007/s11095-006-9183-2.
- Leong SC, Sirich TL. Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins 2016;8(12):358. https://doi.org/10.3390/toxins8120358.