The Analysis for the Two-stage Model on Scale-free Networks

Автор: Maoxing Liu, Yunli Zhang

Журнал: International Journal of Engineering and Manufacturing(IJEM) @ijem

Статья в выпуске: 6 vol.1, 2011 года.

Бесплатный доступ

In this paper, we will study a two-stage model by complex networks. The dynamic behaviors of the model on a heterogenous scale-free (SF) network are considered, where the absence of the threshold on the SF network is demonstrated, and the stability of the disease-free equilibrium is obtained.

Complex network, Two-stage model, Epidemic, Threshold

Короткий адрес: https://sciup.org/15014252

IDR: 15014252

Список литературы The Analysis for the Two-stage Model on Scale-free Networks

  • R. M. Anderson, R. M. May, Infectious Diseases of Humans, Oxford University Press, Oxford, UK (1991).
  • Kermack, W. O. and A. G. McKendrick. 1927. A Contribution to the Mathematical. Theory of Epidemics. Proc. Roy. Soc. A. 115, 700-721.
  • T. Harris, Contact interactions on a lattice, Ann. Probab., 2 (1974) 969-988.
  • H. W. Hethcote, J. A. Yorke, Gonorrhoea: transmission dynamics and control in: Lecture Notes in Biomathematics, vol. 56. Springer, New York, 1984.
  • M. Kretzschmar, Y.T.H.P. Van Duynhoven, A. J. Severijnen, Modeling prevention strategies for gonorrhoea and chlamydia using stochastic network simulations. Am. J. Epidemiol., 144 (1997) 306-317.
  • S. M. Krone, The two-stage contact process, The Annals of Applied Probability, 9 (2) 1999 331-351.
  • R. Pastor-Satorras, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001a) 3200-3203.
  • R. Pastor-Satorras, A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001b) 066117.
  • R. Pastor-Satorras, A. Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002) 036104.
  • D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts, Network robustness and fragility: percolation on random graphs, Phys. Rev. Lett.,85 (2000) 5468-5471.
  • R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85 (2000) 4626-4628.
  • R. Cohen, S. Havlin, D. Ben-Avraham, , Phys. Rev. Lett., 91 (2003) 247901.
  • M. E. J. Newman, Spread of epidemic disease on networks, Phys. Rev. E, 66 (2002) 016128.
  • H. Shi, Z. Duan, G. Chen, An SIS model with infective medium on complex networks, Physica A 387 (2008) 2133-2144.
  • Y. Y. Ahn, H. Jeong, N. Masuda, J. D. Noh, Epidemic dynamics of two species of interacting particles on scale-free networks, Phys. Rev. E, 74 (2006) 066113.
  • M. E. J. Newman, Threshold Effects for Two Pathogens Spreading on a Network, Phys. Rev. Lett., 95 (2005) 108701.
  • N.K. Masuda, N. Konno, Multi-state epidemic processes on complex networks, Journal of Theoretical Biology, 243 (2006) 64-75.
  • A. -L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512.
  • W. P. Guo, X. Li, X. F. Wang, Epidemics and immunization on Euclidean distance preferred small-world networks, Physica A 380 (2007) 684-690.
  • X. L, X. F. Wang, Controlling the spreading in small-world evolving networks: stability, oscillation, and topology, IEEE Trans. Automat.Control 51 (3) (2006) 534-540.
  • X. L, X. F. Wang, On the stability of epidemic spreading in small-world networks: how prompt the recovery should be?, Int. J. Syst. Sci. 38 (5) (2007) 400-407.
Еще
Статья научная