The analysis of coupled gravitational and electromagnetic waves

Автор: Gladyshev V.O., Kauts V.L., Kayutenko A.V., Morozov A.N., Nikolaev P.P., Fomin I.V., Sharandin E.A.

Журнал: Пространство, время и фундаментальные взаимодействия @stfi

Рубрика: Гравитация, космология и фундаментальные поля

Статья в выпуске: 3-4 (44-45), 2023 года.

Бесплатный доступ

A method for studying gravitational waves coupled with an electromagnetic field in the Fabry-Perot resonators by detecting free transverse gravitational waves in the surrounding space is considered. Internal solutions of the gravitational field equations describing bound gravitational waves and a method for calculating the characteristics of free gravitational waves are presented. Estimates of the source and detector parameters for implementing experiments of this type were also presented.

Gravitational waves, electromagnetic waves, the fabry-perot resonator

Короткий адрес: https://sciup.org/142240769

IDR: 142240769   |   DOI: 10.17238/issn2226-8812.2023.3-4.99-107

Список литературы The analysis of coupled gravitational and electromagnetic waves

  • Maggiore M. Gravitational Waves: Volume 1: Theory and Experiments. Oxford: Oxford University Press, 2007, 576 p.
  • Abbott B. P. et al. [LIGO Scientific and Virgo Collaborations]. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett., 2016, vol. 116, p. 241103.
  • Abbott B. P. et al. [LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations]. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 2017, vol. 848, L13.
  • Gertsenshtein M. E. and Pustovoit V.I. On the Detection of Low Frequency Gravitational Waves, Sov. Phys. JETP, 1962, vol. 16, p. 433.
  • S. Chervon, I. Fomin, V. Yurov, A. Yurov, Scalar Field Cosmology, Series on the Foundations of Natural Science and Technology, Volume 13 (WSP, Singapur, 2019), https://doi.org/10.1142/11405
  • Manucharyan G. D., Fomin I. V. Corrections to standard inflationary models induced by Gauss - Bonnet scalar, Space, Time and Fundamental Interactions, 2022, no. 40, pp. 119–131
  • Chervon S. V., Fomin I. V. Reconstruction of Scalar-Torsion Gravity Theories from the Physical Potential of a Scalar Field, Symmetry, 2023, vol. 15, p. 291.
  • Morozov A. N., Golyak I. S., Fomin I. V., Chervon S. V. Detectors of high-frequency gravitational waves based on the gravitational-optical resonance, Space, Time and Fundamental Interactions, 2022, no. 41, pp. 49–61.
  • Kadlecov´a H., Klimo O., Weber S. and Korn G. Gravitational wave generation by interaction of high power lasers with matter using shock waves, Eur. Phys. J. D, 2017, vol. 71, p. 89.
  • Fomin I. V.,Gladyshev V. O., Gorelik V. S.,Kauts V. L., Kaytenko A. V. and Sharandin E. A. Laboratory sources of gravitational waves, J. Phys. Conf. Ser., 2020, vol. 1705, p. 012004. doi:10.1088/1742-6596/1705/1/012004
  • Grishchuk L. P. and Sazhin M. V. Emission of gravitational waves by an electromagnetic cavity, Zh. Eksp. Teor. Fiz., 1973, vol. 65, pp. 441-454.
  • Kolosnitsyn N. I. and Rudenko V. N. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field, Phys. Scripta, 2015, vol. 90, p. 074059.
  • Morozov A. N. and Pustovoit V. I. Generation and registration of coupled high-frequency gravitational waves, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, vol. 1, p. 46.
  • Morozov A. N., Pustovoit V. I., Fomin I. V. On the gravitational waves coupled with electromagnetic waves. Space, Time and Fundamental Interactions, 2020, no. 2, pp. 53–63.
  • Morozov A. N., Pustovoit V. I., Fomin I. V. Bound gravitational waves in a dielectric medium and a constant magnetic field, Eur. Phys. J. Plus, 2020, vol. 135, p. 950.
  • Morozov A. N., Pustovoit V. I., Fomin I. V. Generation of Gravitational Waves by a Standing Electromagnetic Wave, Grav. Cosmol., 2021, vol. 27, pp. 24-29.
  • Fabbri R. Electromagnetic and Gravitational Waves in the Background of a Reissner-Nordstrom Black Hole, Nuovo Cim. B, 1977, vol. 40, pp. 311-329.
  • Morozov A. N., Fomin I. V., Gladyshev V.O., et al. Method for generating gravitational waves by means of a standing electromagnetic wave system, Herald of the Bauman Moscow State Technical University, Series Natural Sciences, 2020, no. 6 (105), pp. 90-105.
  • Eddington A. S. The propagation of gravitational waves, Proc. Roy. Soc. Lond. A. 1922, vol. 102, p. 268.
  • Flanagan E. E. and Hughes S. A. The Basics of gravitational wave theory, New J. Phys., 2005. vol. 7, p. 204.
  • Cabral F. and Lobo F. S. N. Gravitational waves and electrodynamics: New perspectives, Eur. Phys. J. C. 2017, vol. 77, p. 237.
  • Clarke J. SQUIDs: then and now, Int. J. Mod. Phys. B, 2010, vol. 24, pp. 3999-4038.
  • Storm J. H., H¨ommen P., Drung D. and K¨orber R. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device, Appl. Phys. Lett., 2017, vol. 110, p. 072603.
  • Aggarwal N., Aguiar O. D., Bauswein A. et al. Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies, Living Rev. Rel., 2021, vol. 24, p. 4.
Еще
Статья научная