The choice of the energy parameters of an oxygen-hydrogen propellant expander cycle rocket engine

Автор: Belyakov V.A.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 3 vol.23, 2022 года.

Бесплатный доступ

In liquid-propellant rocket engines (LRE), made according to a gas-free scheme, the turbine of the turbopump unit (TPU) is driven by heated fuel in the coolant system of the combustion chamber (CC). The absence of a gas generator greatly increases the reliability of the LRE and provides a number of advantages over other engine schemes. At the moment, the existing oxygen-hydrogen gasless liquid-propellant rocket engines do not meet mod-ern tactical and technical requirements for the level of thrust and pressure in the (CC) engine. Therefore, it is necessary to study ways to increase the energy parameters of the liquid-propellant rocket engine and identify promising engine schemes. This article proposes schematic solutions for an oxygen-hydrogen LRE, provides an analysis of the influence of various factors on the power parameters of the engine, as well as recommendations for the design of gasless LRE. A mathematical model for calculating the main energy and geometric parameters of the engine has been developed. Prospective pneumohydraulic schemes of an oxygen-hydrogen gasless liquid-propellant rocket engine are proposed, depending on the tactical and technical requirements.

Еще

Liquid-propellant rocket engine by expander cycle scheme, oxygen, hydrogen, turbopump unit, combustion chamber, specific thrust impulse of the engine, heat exchange intensification

Короткий адрес: https://sciup.org/148329639

IDR: 148329639   |   DOI: 10.31772/2712-8970-2022-23-3-424-436

Список литературы The choice of the energy parameters of an oxygen-hydrogen propellant expander cycle rocket engine

  • Dobrovolsky M. V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya [Liquid rocket engines, Fundamentals of design]. Moscow, Bauman Moscow state technical University Publ., 2016, 461 p.
  • Kalmykov G. P., Lebedinskiy E. V., Tararyshkin V. I., Eliseyev I. O. Bezgeneratornyy ZHRD tyagoy 200 t.s. na uglevodorodnom goryuchem [Generatorless rocket engine thrust 200 t.s. on hydro-carbon fuel]. Proceedings of 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”, Liege (Belgium), 3-6 december, 2002, pp. 2–9. URL: https://el.b-ok2.org/dl/3136783/f689d5 (date of the application: 10.06.2019).
  • Kalmykov G. P., Lebedinskiy E. V., Tararyshkin V. I. Kompyuternyye modeli zhidkostnykh raketnykh dvigateley [Computer models of liquid-propellant rocket engines]. Moscow, Mashinostroyeniye Publ., 2009, 376 p.
  • Belyakov V. A., Vasilevskiy D. O. [Perspective circuit solutions of liquid rocket engine by ex-panded cycle]. Vestnik PNIPU. Aerospace science. 2019, Vol. 58, P. 69–86. Doi: 10.15593/2224- 9982/2019-58-06.
  • Belyakov V. A., Vasilevskiy D. O., Ermashkevich A. A., Kolomencev A. I., Farizanov I. R. De-velopment of the concept of a reusable liquid rocket engine with three-component fuel. Siberian Aerospace Journal. 2021, Vol. 22, No. 1, P. 121–136. DOI: 10.31772/2712-8970-2021-22-1-121-136.
  • Lebedinsky E. V. et al. Rabochie processy v zhidkostnom raketnom dvigatele i ih modelirovanie [Working processes in a liquid rocket engine and their modeling]. Moscow, Mashinostroenie Publ., 2008, 512 p.
  • Gakhun G. G. Konstruktsiya i proyektirovaniye zhidkostnykh raketnykh dvigateley [Design and engineering of liquid rocket engines]. Moscow, Engineering Publ., 1989, 424 p.
  • Berezhinsky R. A., Sokolov S. A., Gudkova S. R. et al. Modelirovanie rabochih processov i konstruktsiya elementov kamery ZHRD [Modeling of working processes and construction of elements of the LPRE chamber]. Voronezh, VGTU Publ., 2002, 169 p.
  • Gakhun G. G., Alekseev I. G., Berezanskaya E. L. et al. Atlas konstruktsiy ZHRD [ATLAS of LPRE design, Part 1]. Moscow, MAI Publ., 1969, 286 p.
  • Naraghi M. H., Dunn S., Coats D. Dual regenerative cooling circuits for liquid rocket engines (Preprint). 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. 9 July – 12 July 2006, Sac-ramento, California. AIAA 2006-4367. 2006. P. 1–18.
  • Ievlev V. M. Turbulenthoye dvizheniye vysokotemperaturnykh sploshnykh sred [Turbulent mo-tion of high-temperature continuous media]. Moscow, Nauka Publ., 1975, 255 p.
  • Ponomarenko A. RPA: Tool for Rocket Propulsion Analysis, Thermal Analysis of Thrust Chambers. Available at: http://propulsion-analysis.com/downloads/2/docs/RPA_ThermalAnalysis.pdf (accessed: 10.10.2020).
  • Belyakov V. A., Vasilevskiy D. O., Ermashkevich A. A., Kolomencev A. I., Farizanov I. R. Design of the cooling system of a reasuble liquid rocket engine with three-component fuel. Siberian Aerospace Journal. 2021, Vol. 22, No. 2, P. 316–327. DOI: 10.31772/2712-8970-2021-22-2-316-327.
  • Horlock J. H. Osevyye turbiny (gazovaya dinamika i termodinamika) [Axial turbines (gas dy-namics and thermodynamics)]. Moscow, Mashinostroyeniye Publ., 1972, 211 p.
  • Ovsyannikov B. V., Borovsky B. I. Teoria I raschet rabochih agregatov pitania jidkostih raketnih dvigatelei [Theory and calculation of power units for liquid rocket engines]. Moscow, Mashinostroyeniye Publ., 1986, 375 p.
  • Korpela S. A. Principles of turbomachinery. Hoboken, New Jersey, 2011. 467 р.
  • Oskar J. Haidn. Advanced rocket Engines. Germany: German Aerospace Center (DLR), 2008. 40 р.
  • Oskar J. Haidn. On the effect of axial turbine rotor blade design on efficiency: a parametric study of the Baljé-diagram. Germany: German Aerospace Center (DLR), 2017. 15 р.
  • Hobler T. Teploperedacha i teploombenniki [Heat transfer and heat exchangers]. Leningrad, Goskhimizdat Publ., 1961, 821 p.
  • Kudryavtsev V. M., Vasilyev A. P. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley [Fundamentals of the theory and calculation of liquid rocket engines]. Moscow, Vysshaya shkola Publ., 1975, 656 p.
  • Aleksandrenkov V. P. Raschet naruzhnogo protochnogo okhlazhdeniya kamery ZHRD [Calcu-lation of external flow-through cooling of the LPRE chamber]. Moscow, Bauman Moscow State Technical University Publ., 2012, 74 p.
Еще
Статья научная