The Gordon theorem: origins and meaning

Автор: Kusraev Anatoly G., Kutateladze Semen S.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.21, 2019 года.

Бесплатный доступ

Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordon’s Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovich's heuristic principle and Boolean valued transfer principle is also discussed.

Еще

Vector lattice, kantorovich's principle, gordon's theorem, boolean valued analysis

Короткий адрес: https://sciup.org/143168815

IDR: 143168815   |   DOI: 10.23671/VNC.2019.21.44626

Список литературы The Gordon theorem: origins and meaning

  • Gordon, E. I. Real Numbers in Boolean-Valued Models of Set Theory and K-spaces, Dokl. Akad. Nauk SSSR, 1977, vol. 237, no. 4, pp. 773-775 (in Russian).
  • Aliprantis, C. D. and Burkinshaw, O. Positive Operators, New York, Academic Press, 1985.
  • Vulikh, B. Z. Introduction to the Theory of Partially Ordered Spaces, Groningen, Wolters-Noordhoff Publications LTD, 1967.
  • Kantorovich, L. V., Vulikh, B. Z. and Pinsker, A. G. Functional Analysis in Semiordered Spaces, Moscow-Leningrad, Gostekhizdat, 1950, 548 p. (in Russian).
  • Bell, J. L. Boolean-Valued Models and Independence Proofs in Set Theory, New York etc., Clarendon Press, 1985, xx+165 pp.
  • Takeuti, G. Boolean Valued Analysis, Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham, 1977), Lecture Notes in Mathematics, vol. 753, Berlin etc., Springer-Verlag, 1979, pp. 714-731.
  • Kusraev, A. G. and Kutateladze, S. S. Boolean Valued Analysis, Dordrecht, Kluwer, 1999.
  • Kusraev, A. G. and Kutateladze, S. S. Vvedenie v bulevoznachnyj analiz [Introduction to Boolean Valued Analysis], Moscow, Nauka, 2005, 526 p. (in Russian).
  • Kusraev, A. G. and Kutateladze, S. S. Boolean Valued Analysis: Selected Topics (Trends in Science: The South of Russia. A Mathematical Monograph. Issue 6), Vladikavkaz, SMI VSC RAS, 2014.
  • Scott D. Boolean Models and Nonstandard Analysis, Applications of Model Theory to Algebra, Analysis, and Probability, Ed. W. A. J. Luxemburg, New York etc., Holt, Rinehart and Winston, 1969, pp. 87-92.
  • Jech T. J. Lectures in Set Theory with Particular Emphasis on the Method of Forcing (Lecture Notes in Mathematics), Berlin, Springer-Verlag, 1971.
  • DOI: 10.1007/BFb0061131
  • Takeuti, G. and Zaring, W. M. Axiomatic set Theory, New York, Springer-Verlag, 1973, 238 p.
  • Meyer-Nieberg, P. Banach Lattices, Berlin etc., Springer-Verlag, 1991, xvi+395 p.
  • Kantorovich, L. V. On Semiordered Linear Spaces and their Applications to the Theory of Linear Operations, Dokl. Akad. Nauk SSSR, 1935, vol. 4, no. 1-2, pp. 11-14.
  • Kutateladze, S. S. Mathematics and Economics in the Legacy of Leonid Kantorovich, Vladikavkaz Math. J., 2012, vol. 14, no. 1, pp. 7-21.
  • DOI: 10.23671/VNC.2012.14.10950
  • Gordon, E. I. Stability of Horn Formulas with Respect to Transition Algebras of Boolean Measures on Locally Compact Fields, Moscow, Lenin Moscow State Pedagogical Institute, VINITI, no. 1243-81, 1980 (in Russian).
  • Gordon, E. I. To the Theorems of Identity Preservation in K-Spaces, Sibirskii Matematicheskii Zhurnal, 1982, vol. 23, no. 5, pp. 55-65.
  • Gordon, E. I. Elements of Boolean Valued Analysis, Gor'kii State University, Gor'kii, 1991 (in Russian).
  • Jech, T. J. Abstract Theory of Abelian Operator Algebras: an Application of Forcing, Trans. Amer. Math. Soc., 1985, vol. 289, no. 1, pp. 133-162.
  • Jech, T. J. First Order Theory of Complete Stonean Algebras (Boolean-valued Real and Complex Numbers), Canad. Math. Bull., 1987, vol. 30, no. 4, pp. 385-392.
  • Kusraev, A. G. Dominated Operators, Dordrecht, Kluwer, 2000, 446 p.
  • Gutman, A. E. Locally One-Dimensional K-Spaces and σ-Distributive Boolean Algebras, Siberian Adv. Math., 1995, vol. 5, no. 1, pp. 42-48.
  • Fremlin, D. H. Measure Theory. Vol. 2. Broad Foundations, Cambridge, Cambridge University Press, 2001.
  • Scott, D. A Proof of the Independence of the Continuum Hypothesis, Mathematical Systems Theory, vol. 1, no. 2, pp. 89-111.
  • Takeuti, G. Two Applications of Logic to Mathematics, Princeton, Princeton Univ. Press, 1978, viii+137 p.
  • Vopenka, P. General Theory of ∇-Models, Comment. Math. Univ. Carolin, 1967, vol. 8, no. 1, pp. 147-170.
  • Solovay, R. and Tennenbaum, S. Iterated Cohen Extensions and Souslin's Problem, Ann. Math., 1971, vol. 94, no. 2, pp. 201-245.
  • DOI: 10.2307/1970860
  • Solovay, R. A Model of set Theory in Which Every Set of Reals is Lebesgue Measurable, Ann. Math., 1970, vol. 92, no. 1, pp. 1-56.
  • DOI: 10.2307/1970696
  • Wright, J. D. M. All Operators on a Hilbert Space are Bounded, Bull. Amer. Math. Soc., 1973, vol. 79, no. 6, pp. 1247-1250.
  • Gordon, E. I. On the Extension of Haar Measure in σ-Compact Groups, Moscow, Lenin Moscow State Pedagogical Institute, VINITI, no. 1243-81, 1980 (in Russian).
  • Vladimirov, D. A. Boolean Algebras, Moscow, Nauka, 1969 (in Russian).
  • Shelah, S., Can you Take Solovay's Inaccessible Away? Israel Journal of Mathematics, 1984, vol. 48, no. 1, pp. 1-47.
  • DOI: 10.1007/BF02760522
  • Sacks, G. Measure-Theoretic Uniformity in Recursion Theory and Set Theory, Trans. Amer. Math. Soc., 1969, vol. 142, pp. 381-420.
  • DOI: 10.2307/1995364
  • Tennenbaum, S. Souslin's Problem, Proceedings of the National Academy of Sciences, 1968, vol. 59, no. 1, pp. 60-63.
  • DOI: 10.1073/pnas.59.1.60
  • Jech, T. J. Non-Provability of Souslins Hypothesis, Comment. Math. Univ. Caroline, 1967, vol. 8, no. 1, pp. 291-305.
  • Dales, H. and Woodin, W. An Introduction to Independence for Analysts (London Math. Soc. Lect. Note Ser.), vol. 115, Cambridge, Cambridge Univ. Press, 1987.
  • DOI: 10.1017/CBO9780511662256
Еще
Статья научная