The Lyapunov stability of the Cauchy-Dirichlet problem for the generalized Hoff equation

Бесплатный доступ

We consider the initial boundary value problem with homogeneous Dirichlet boundary conditions for the generalized Hoff equation in a bounded domain. This equation models the dynamics of buckling of a double-tee girder under constant load and belongs to a large class of Sobolev type semilinear equations (We can isolate the linear and non-linear parts of the operator acting on the original function). The paper addresses the stability of zero solution of this problem. There are two methods in the theory of stability: the first one is the study of stability by linear approximation and the second one is the study of stability by Lyapunov function. We use the second Lyapunov''s method adapted to the case of incomplete normed spaces. The main result of this paper is a theorem on the stability and asymptotic stability of zero solution to this problem.

Еще

Sobolev-type equation, phase space, lyapunov stability

Короткий адрес: https://sciup.org/147159288

IDR: 147159288   |   DOI: 10.14529/mmp140411

Текст научной статьи The Lyapunov stability of the Cauchy-Dirichlet problem for the generalized Hoff equation

Let Q C R s Ite a bounded domain with boundary d Q of class Cx . Consider the generalized Hoff equation [1] in cylinder Q x R

( A — А о) Ut + A Ut = a i u + a 2 U + ... + anu , n G N .             (1)

This equation models the bending of an I-beam. Here the function u = u ( x,t ) , ( x, t ) G Q x R Is the displacement of the beam, from the vertical position. The parameter A G R+ corresponds to a, constant vertlcal load and the parameters ai G R. i = 1 , 2 , ...,n characterize the material of the beam.

Consider the initial-boundary value problem

u ( x, 0) = u 0( x ) , x G Q; u ( x,t )=0 , ( x, t ) G d Q x R               (2)

for equation (1). This problem was firstly considered in [2-4], wherein it was found out that the problem is essentialy unsolvable for arbitrary initial data. The set of initial values, which guarantees the existence and uniqueness of solution to initial-boundary value problem for equation (1), has been studied in [5]. If n = 2 and a 1 ■ a2 G R+ then the phase space of equation (1) is a simple Banach C ^ -manifold. This result was obtained in [6]. And if a 1 ■ a2 G R - then the phase space of equation (1) lies on the Whitney fold. It is shown in [7]. The generalized Hoff equation (for n >  3) was considered in [8], but in this paper the stability has not been studied. This result was obtained in [9] for the case when n = 3. Generalized Sobolev type equations have been studied in other papers, for example, in [10]. In this paper we generalize the results of [9] and consider the case when n >  3.

The paper consists of two parts. The first part is devoted to the reduction of problem (1), (2) to the Cauchy problem u (0) = u о

for abstract semilinear Sobolev type equation

Lui = Mu + N ( u ) .

Here L, M are linear operators and N is nonlinear operator defined on specially constructed functional spaces. The second part is devoted to the study of stability of stationary solution to problem (1), (2). This is the main result.

  • 1.    Phase Space

Consider spaces U = W1 (Q). F = W- 1(Q) and operators

Lu v) = /(( A - A °) uv -V.^« ) dx, Su, v eW1 (Q) ,

Muv = a 11 uvdx, Vu.v e L 2 n (Q) ,

(N ( u ) , v) = y( a 2 u 3 + ... + an- 1 u 2 n- 3 + anu 2 n- 1) vdx Vu,v e L2n (Q) .

Embedding W 21 (Q) ^ L2n (Q) is dense and continuous. Therefore L,M e L (U; F). and L is a Fredholm operator. The spectrum of the operator L is real and discrete, has finite multiplicity and condenses only to —to. Operator N e Cx (U; F).

A vector function u e Cю (U , F) satisfying equation (4) is called a solution of this equation.

Definition 1. A set P C U is called a phase space of equation (3) if the following conditions are satisfied:

  • (i)    each solution u = u ( t ) of (4) lies in P pointwisely: i.e.. u ( t ) e P for all t e R;

  • (ii)    for each u ° e P, there exists a unique solution to problem (3), (4).

Theorem 1. Let n = 1 , 2 when s = 4 (i.e. Q C R4J, n = 1 , 2 , 3 when s = 3 (i.e. Q C R3 J and n e N wh en s = 1 , 2 (i.e. Q C Ro r Q C R2). Then one of the two conditions is satisfied

  • (i)    if ker L = { 0 }. then the. phase space, of (''.quation (1) concidcs with U.

  • (ii)    if ker L = { 0 }, and all coefficients ai e R \{ 0 }, i = 1 , ...,n have the same sign. Then the phase space of eqiation (1) is simple manifold

    M =

    1 + a 2 u 2


    + ... + anu 2 n 2) uxkdx = 0 , k = 1 ,.



  • 2.    Stability

Here xk are orthonormal eigenfunctions (corresponding to the eigenvalues Ak оf L.

P.O. Moskvicheva, I.N. Semenova

Definition 2. A family of mappings S is called a nonlinear semigroup in a normed space V if for every u G V and some т = т ( u ) 6 R+ the following conditions are satisfied:

  • (1)    S = S ( t, u) G V. for all t G ( —т ; т) ; S (0 , u) = u:

  • (11)    S ( t + s, u ) = S ( t, S ( s, u )) for all t + s G ( —т, т ).

A point u G V such that S ( t, u ) = u,t G R is called a stationary point.

Definition 3. A stationary point u is called

  • (i)    stable (in sense of A.M. Lyapunov), if for any neighborhood Ou оf u there exists a neighborhood O'u (i.e. not necessarily the same neighborhood) of the same point, such that S ( t, v ) G O'u for all v G Ou arid t G R+:

  • (ii)    asymptotically stable (in sense of A.M. Lyapunov), if it is stable and for any point v in some neighborhood Ou оf u S ( t, v ) ^ u for t ^ to.

Definition 4. A functional V G C (V; R) is called a Lyapunov functional if

  • z x --------1 z .......

V ( u ) = ?т ( V ( S ( t,u )) - V ( u )) - 0

t^ 0+ t for all u G V.

Theorem 2. Let u be a stationary point. If there exists a Lyapunov functional such that

  • (i)    V ( u ) = 0:

  • (ii)    V ( v ) > ф (|| v — u^ ); here ф is strictly increasing continuous function such that ф (0) = 0 aiid ф ( r ) >  0 f(ir r G R+. then tlгс point u is stable.

Theorem 3. Let the conditions of Theorem 2 be satisfied, and a strictly increasing continuous function ф. such that ф (0) = 0 anul ф ( r )   >  0 for r G R+. exist. If

V ( v ) — —ф ( ||v — u| ). then tltc point u is asymptotically stable.

We will study the stability of problem (1),(2) using Theorems 2 and 3.

Consider a space U (= W 2) with norm || ■ | | of space L<2. It is an incomplete normed space. Define the Lyapunov functional by formula

V ( u ) = У( u x +( ^ о

— A ) u 2) dx.

Obviously V (0) = 0 arid V ( u ) > c|u|2. Moreover multiph'lug (1) scalarly in L2 u we obtain

! /( u ) = —a i |u| 2 — a 2 |u| L 4 — ... — an|u| L 2 n.

Since the embedding L2n ^ L2 is obvious, the following inequality holds

V ^ ( u ) — —a 1 ll uh 2 — a 2 c 2 ll uhL 4 . . . — ancn|u| Ln n .

Here Cj,j = 1 , n are the constants of embedding. Function constructed from the norm || ■ | | on the right side of (8) satisfies the conditions of Theorem 3. So we have proved the following theorem.

Theorem 4. Zero solution of problem (1), (2) is asymptotically stable for any aj E R+ , j = 1n,X E [0 ,A 0].

Список литературы The Lyapunov stability of the Cauchy-Dirichlet problem for the generalized Hoff equation

  • Hoff, N.J. Creep buckling/N.J. Hoff//Aeronautical Quarterly. -1956. -V. 7, N 1. -P. 1-20.
  • Сидоров, Н.А. Общие вопросы регуляризации в задачах теории ветвления/Н.А. Сидоров. -Иркутск: Изд-во Иркутского гос. ун-та, 1982. -314 c.
  • Сидоров, Н.А. О применении некоторых результатов теории ветвлений при решении дифференциальных уравнений/Н.А. Сидоров, О.А. Романова//Дифференциальные уравнения. -1983. -Т. 19, № 9. -С. 1516-1526.
  • Сидоров, Н.А. Обобщенные решения дифференциальных уравнений с фредгольмовым оператором при производной/Н.А. Сидоров, М.В. Фалалеев//Дифференциальные уравнения. -1987. -Т. 23, № 4. -С. 726-728.
  • Свиридюк, Г.А. Квазистационарные траектории полулинейных динамических уравнений типа Соболева/Г.А. Свиридюк//Изв. РАН. Серия математическая. -1993. -Т. 57, № 3. -С. 192-207.
  • Свиридюк, Г.А. Фазовое пространство начально-краевой задачи для уравнения Хоффа/Г.А. Свиридюк, В.О. Казак//Математические заметки. -2002. -Т. 71, № 2. -С. 292-297.
  • Свиридюк, Г.А. Сборка Уитни в фазовом пространстве уравнения Хоффа/Г.А. Свиридюк, И.К. Тринеева//Известия вузов. Математика. -2005. -№ 10. -С. 54-60.
  • Баязитова, А.А. Фазовое пространство начально-краевой задачи для обобщенного уравнения Хоффа/А.А. Баязитова//Вестник МаГУ. Математика. -2010. -Вып. 12. -С. 15-21.
  • Загребина, С.А. Устойчивость и неустойчивость решений уравнений Хоффа. Численный эксперимент/С.А. Загребина, П.О. Пивоварова//Неклассические уравнения математической физики: сб. науч. работ/под ред. А.И. Кожанова. -Новосибирск, 2010. -С. 88-94.
  • Свиридюк, Г.А. Разрешимость неоднородной задачи для обобщенного фильтрационного уравнения Буссинеска/Г.А. Свиридюк, И.Н. Семенова//Дифференциальные уравнения. -1988. -Т. 24, № 9. -С. 1607-1611.
Еще
Статья научная