The neural correlates of exact calculation in word and numerical formats in low and high math performers: a fNIRS study

Автор: Maria A. Sitnikova, Julia A. Marakshina, Timofey V. Adamovich, Grigory O. Pronin, Rustam G. Asadullaev

Журнал: International Journal of Cognitive Research in Science, Engineering and Education @ijcrsee

Рубрика: Original research

Статья в выпуске: 1 vol.11, 2023 года.

Бесплатный доступ

The representation format of math problems can manifest dissimilarly in people with varying levels of math performance. The aim of this study was to investigate the neurocognitive underpinnings of two-digit exact calculation tasks in different formats: numerical and word. Fifty-three students were divided into groups with high and low levels of math performance based on their ability to solve math problems. They were asked to calculate addition problems with two-digit numbers and to read math problems that did not require calculations. Brain activation was recorded using functional near-infrared spectroscopy (fNIRS). General linear model (GLM) analysis revealed that reading math problems without calculation led to increased activation in the inferior temporal and fusiform gyri in a group of high-level performers, while a group of low-level performers demonstrated increased activation in Broca’s area and the inferior frontal gyrus in the same experimental condition, as well as during solving arithmetic problems in a word format of the exact calculation task. Analysis after bootstrapping revealed similar activation patterns in both groups. Both domain-specific and domain-general regions of the frontal and parietal brain areas were involved in the calculations. Right and left hemisphere activation was found both in low and high math performers. Comparing experimental conditions with resting state revealed significant activation in Broca’s area in all conditions in a group of high-level performers and in a word format of arithmetic problems in a group of low-level performers. Thus, the observed brain patterns suggest the involvement of complex sentence comprehension, especially in high-performing students. These results could be used in future to improve educational practice for students with varying levels of math competence.

Еще

Exact calculation, addition, numerical format, word format, math competence, fnirs

Короткий адрес: https://sciup.org/170198705

IDR: 170198705   |   DOI: 10.23947/2334-8496-2023-11-1-93-114

Список литературы The neural correlates of exact calculation in word and numerical formats in low and high math performers: a fNIRS study

  • Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., ... & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in neuroinformatics, 14. https://doi.org/10.3389/fninf.2014.00014
  • Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909-4917. https://doi.org/10.1073/pnas.1603205113
  • Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature reviews neuroscience, 9(4), 278-291. https://doi.org/10.1038/nrn2334
  • Ansari, D., Grabner, R. H., Koschutnig, K., Reishofer, G., & Ebner, F. (2011). Individual differences in mathematical competence modulate brain responses to arithmetic errors: An fMRI study. Learning and Individual Differences, 21(6), 636-643. https://doi.org/10.1016/j.lindif.2011.07.013
  • Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in cognitive sciences, 6(12), 511-516. https://doi.org/10.1016/S1364-6613(02)02040-5
  • Ardila, A. (2010). On the evolution of calculation abilities. Frontiers in Evolutionary Neuroscience, 7. https://doi.org/10.3389/ fnevo.2010.00007
  • Arsalidou, M., & Taylor, M. J. (2011). Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage, 54(3), 2382-2393. https://doi.org/10.1016/j.neuroimage.2010.10.009
  • Artemenko, C., Sitnikova, M. A., Soltanlou, M., Dresler, T., & Nuerk, H. C. (2020). Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with handedness. Scientific reports, 10(1), 1-11. https://doi. org/10.1038/s41598-020-58477-7
  • Artemenko, C., Soltanlou, M., Dresler, T., Ehlis, A. C., & Nuerk, H. C. (2018a). The neural correlates of arithmetic difficulty depend on mathematical ability: evidence from combined fNIRS and ERP. Brain structure and function, 223(6), 2561- 2574. https://doi.org/10.1007/s00429-018-1618-0
  • Artemenko, C., Soltanlou, M., Ehlis, A. C., Nuerk, H. C., & Dresler, T. (2018b). The neural correlates of mental arithmetic in adolescents: a longitudinal fNIRS study. Behavioral and brain functions, 14(1), 1-13. https://doi.org/10.1186/s12993- 018-0137-8
  • Artemenko, C. (2021). Developmental fronto-parietal shift of brain activation during mental arithmetic across the lifespan: A registered report protocol. Plos one, 16(8), e0256232. https://doi.org/10.1371/journal.pone.0256232
  • Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195-1205. https://doi.org/10.1016/j.cortex.2012.05.022
  • Basten, U., Stelzel, C., & Fiebach, C. J. (2012). Trait anxiety and the neural efficiency of manipulation in working memory. Cognitive, Affective, & Behavioral Neuroscience, 12(3), 571-588. https://doi.org/10.3758/s13415-012-0100-3
  • Beeman, M. J., & Bowden, E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory & cognition, 28(7), 1231-1241. https://doi.org/10.3758/BF03211823
  • Boonen, A. J., de Koning, B. B., Jolles, J., & Van der Schoot, M. (2016). Word problem solving in contemporary math education: A plea for reading comprehension skills training. Frontiers in psychology, 7, 191. https://doi.org/10.3389/ fpsyg.2016.00191
  • Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83(3), 223-240. https://doi. org/10.1016/S0010-0277(02)00005-7
  • Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 36-41. https://doi.org/10.1111/cdep.12059
  • Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332(6033), 1049-1053. https://doi.org/10.1126/science.1201536
  • Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate mental addition. Journal of experimental child psychology, 112(2), 141-160. https://doi.org/10.1016/j. jecp.2012.02.005
  • Clark, C. A. C., Liu, Y., Wright, N. L. A., Bedrick, A., & Edgin, J. O. (2017). Functional neural bases of numerosity judgments in healthy adults born preterm. Brain and Cognition, 118, 90–99. https://doi.org/10.1016/j.bandc.2017.07.011
  • Cragg, L., Keeble, S., Richardson, S., Roome, H. E., & Gilmore, C. (2017). Direct and indirect influ-ences of executive functions on mathematics achievement. Cognition, 162, 12–26. https://doi.org/10.1016/j.cognition.2017.01.014
  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical cognition, 1(1), 83-120. Retrieved from https://www.unicog.org/publications/DehaeneCohen_TripleCodeModelNumberProcessing_ MathCognition1995.pdf
  • Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H. C. (2015). Word problems: A review of linguistic and numerical factors contributing to their difficulty. Frontiers in psychology, 6, 348. https://doi.org/10.3389/fpsyg.2015.00348
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3-6), 487-506. https://doi.org/10.1080/02643290244000239
  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970-974. https://doi.org/10.1126/science.284.5416.970
  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—an fMRI study. Cognitive Brain Research, 18(1), 76-88. https://doi.org/10.1016/j.cogbrainres.2003.09.005
  • Devlin, J. T., Matthews, P. M., & Rushworth, M. F. (2003). Semantic processing in the left inferior pre-frontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. Journal of cognitive neuroscience, 15(1), 71-84. https://doi.org/10.1162/089892903321107837
  • Dresler, T., Obersteiner, A., Schecklmann, M., Vogel, A. C. M., Ehlis, A. C., Richter, M. M., ... & Fallgatter, A. J. (2009). Arithmetic tasks in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): a study involving primary and secondary school children. Journal of neural transmission, 116(12), 1689-1700. https://doi.org/10.1007/s00702-009-0307-9
  • Esch, L., Dinh, C., Larson, E., Engemann, D., Jas, M., Khan, S., ... & Hämäläinen, M. S. (2019). MNE: software for acquiring, processing, and visualizing MEG/EEG data. Magnetoencephalography: From Signals to Dynamic Cortical Networks, 355-371. https://doi.org/10.1007/978-3-030-00087-5_59
  • Fadiga, L., & Craighero, L. (2006). Hand actions and speech representation in Broca’s area. Cortex, 42(4), 486-490. https:// doi.org/10.1016/S0010-9452(08)70383-6
  • Fanari, R., Meloni, C., & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A 369 Longitudinal Study. Frontiers in Psychology. 10, 2460. https://doi.org/10.3389/fpsyg.2019.02460
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in cognitive sciences, 8(7), 307-314. https:// doi.org/10.1016/j.tics.2004.05.002
  • Fishburn, F. A., Ludlum, R. S., Vaidya, C. J., & Medvedev, A. V. (2019). Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS. Neuroimage, 184, 171-179. https://doi.org/10.1016/j.neuroimage.2018.09.025
  • Friso-Van den Bos, I., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational research review, 10, 29-44. https://doi.org/10.1016/j. edurev.2013.05.003
  • Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., ... & Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology, 98(1), 29. https://doi.org/10.1037/0022-0663.98.1.29
  • Fuchs, L. S., Hamlett, C. L., & Powell, S. R. (2003). Grade 3 math battery. [Unpublished paper.] (Available from L. S. Fuchs, Department of Special Education, 328 Peabody, Vanderbilt University, Nashville, TN 37203).
  • Fürst, A. J., & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & cognition, 28(5), 774-782. https://doi.org/10.3758/BF03198412
  • Gentilucci, M., Bernardis, P., Crisi, G., & Volta, R. D. (2006). Repetitive transcranial magnetic stimulation of Broca’s area affects verbal responses to gesture observation. Journal of Cognitive Neuroscience, 18(7), 1059-1074. https://doi. org/10.1162/jocn.2006.18.7.1059
  • Gilmore, C., Clayton, S., Cragg, L., McKeaveney, C., Simms, V., & Johnson, S. (2018). Understanding arithmetic concepts: The role of domain-specific and domain-general skills. PLoS ONE, 13(9), 1–20. https://doi.org/10.1371/journal. pone.0201724
  • Göbel, S. M., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2014). Language affects symbolic arithmetic in children: the case of number word inversion. Journal of experimental child psychology, 119, 17-25. https://doi.org/10.1016/j. jecp.2013.10.001
  • Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage, 38(2), 346-356. https://doi. org/10.1016/j.neuroimage.2007.07.041
  • Grabner, R. H., Reishofer, G., Koschutnig, K., & Ebner, F. (2011). Brain correlates of mathematical competence in processing mathematical representations. Frontiers in human neuroscience, 5, 130. https://doi.org/10.3389/fnhum.2011.00130
  • Grewe, T., Bornkessel, I., Zysset, S., Wiese, R., von Cramon, D. Y., & Schlesewsky, M. (2005). The emergence of the unmarked: A new perspective on the language-specific function of Broca’s area. Human brain mapping, 26(3), 178-190.
  • Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Developmental science, 13(6), 876-885. https://doi.org/10.1111/j.1467-7687.2009.00938.x
  • Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. Journal of applied physiology, 90(5), 1657-1662. https://doi.org/10.1152/ jappl.2001.90.5.1657
  • Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., & Kühn, S. (2015). What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner. Frontiers in psychology, 6, 1535. https://doi.org/10.3389/fpsyg.2015.01535
  • Imbo, I., Vandierendonck, A., & De Rammelaere, S. (2007). The role of working memory in the carry operation of mental arithmetic: Number and value of the carry. Quarterly Journal of Experimental Psychology, 60(5), 708-731. https://doi. org/10.1080/17470210600762447
  • Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365-1375. https://doi.org/10.1016/j. neuroimage.2005.11.016
  • Kaufmann, L., Koppelstaetter, F., Siedentopf, C., Haala, I., Haberlandt, E., Zimmerhackl, L.-B., et al. (2006). Neural correlates of the number–size interference task in children. Neuroreport, 17, 587. https://doi.org/10.1097/00001756-200604240- 00007
  • Klados, M. A., Simos, P., Micheloyannis, S., Margulies, D., & Bamidis, P. D. (2015). ERP measures of math anxiety: how math anxiety affects working memory and mental calculation tasks?. Frontiers in behavioral neuroscience, 9, 282. https:// doi.org/10.3389/fnbeh.2015.00282
  • Klein, E., Nuerk, H. C., Wood, G., Knops, A., & Willmes, K. (2009). The exact vs. approximate distinction in numerical cognition may not be exact, but only approximate: How different processes work together in multi-digit addition. Brain and cognition, 69(2), 369-381. https://doi.org/10.1016/j.bandc.2008.08.031
  • Klein, E., Willmes, K., Dressel, K., Domahs, F., Wood, G., Nuerk, H. C., & Moeller, K. (2010). Categorical and continuous-disentangling the neural correlates of the carry effect in multi-digit addition. Behavioral and Brain Functions, 6(1), 1-15. https://doi.org/10.1186/1744-9081-6-70
  • Klein, M., Grainger, J., Wheat, K. L., Millman, R. E., Simpson, M. I., Hansen, P. C., & Cornelissen, P. L. (2015). Early activity in Broca’s area during reading reflects fast access to articulatory codes from print. Cerebral Cortex, 25(7), 1715-1723. https://doi.org/10.1093/cercor/bht350
  • Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research, 22(3), 397-405. https://doi.org/10.1016/j.cogbrainres.2004.09.011
  • Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: A FMRI study. Developmental neuropsychology, 33(4), 447-473. https://doi. org/10.1080/87565640802101474
  • Lavander-Ferreira, M. J. (2020). Number Processing in Infants and Children Born Very Preterm (Doctoral dissertation, UCL (University College London)). Number Processing in Infants and Children Born Very Preterm - UCL Discovery
  • Luke, R., Larson, E. D., Shader, M. J., Innes-Brown, H., Van Yper, L., Lee, A. K., ... & McAlpine, D. (2021). Analysis methods for measuring passive auditory fNIRS responses generated by a block-design paradigm. Neurophotonics, 8(2), 025008. https://doi.org/10.1117/1.NPh.8.2.025008
  • Matejko, A. A., & Ansari, D. (2017). How do individual differences in children’s domain specific and domain general abilities relate to brain activity within the intraparietal sulcus during arithmetic? An fMRI study. Human brain mapping, 38(8), 3941-3956. https://doi.org/10.1002/hbm.23640
  • Meiri, H., Sela, I., Nesher, P., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Breznitz, Z. (2012). Frontal lobe role in simple arithmetic calculations: An fNIR study. Neuroscience letters, 510(1), 43-47. https://doi.org/10.1016/j.neulet.2011.12.066
  • Menon, V., Rivera, S. M., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000). Functional optimization of arithmetic processing in perfect performers. Cognitive Brain Research, 9(3), 343-345. https://doi.org/10.1016/S0926- 6410(00)00010-0
  • Moeller, K., Klein, E., & Nuerk, H. C. (2011a). (No) small adults: Children’s processing of carry addition problems. Developmental Neuropsychology, 36(6), 702-720. https://doi.org/10.1080/87565641.2010.549880
  • Moeller, K., Klein, E., & Nuerk, H. C. (2011b). Three processes underlying the carry effect in addition–Evidence from eye tracking. British Journal of Psychology, 102(3), 623-645. https://doi.org/10.1111/j.2044-8295.2011.02034.x
  • Monti, M. M., Parsons, L. M., & Osherson, D. N. (2012). Thought beyond language: Neural dissociation of algebra and natural language. Psychological science, 23(8), 914-922. https://doi.org/10.1177/09567976124374
  • Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity in numerical cognition. Frontiers in human neuroscience, 9, 227. https://doi.org/10.3389/fnhum.2015.00227
  • Morcom, A. M., & Fletcher, P. C. (2007). Does the brain have a baseline? Why we should be resisting a rest. Neuroimage, 37(4), 1073-1082. https://doi.org/10.1016/j.neuroimage.2006.09.013
  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of experimental child psychology, 103(4), 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
  • Murphy, D. G. M., Daly, E. M., Van Amelsvoort, T., Robertson, D., Simmons, A., & Critchley, H. D. (1998). Functional neuroanatomical dissociation of verbal, visual and spatial working memory. Schizophrenia Research, 1(29), 105-106. https://doi.org/10.1016/S0920-9964(97)88566-0
  • Nieder, A. (2016). The neuronal code for number. Nature Reviews. Neuroscience, 17(6), 366–382. https://doi.org/10.1038/ nrn.2016.40
  • Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line. Zeitschrift Für Psychologie. 219(1), 3–22. https://doi.org/10.1027/2151-2604/a000041
  • Nussbaumer, D., Grabner, R. H., & Stern, E. (2015). Neural efficiency in working memory tasks: The impact of task demand. Intelligence, 50, 196-208. https://doi.org/10.1016/j.intell.2015.04.004
  • Obersteiner, A., Dresler, T., Reiss, K., Vogel, A. C. M., Pekrun, R., and Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving: chances and limitations in combining educational and neuroscientific research. ZDM 42, 541–554. https://doi.org/10.1007/s11858-010-0256-7
  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human brain mapping, 25(1), 46-59. https://doi.org/10.1002/hbm.20131
  • Pammer, K., Korrel, H., & Bell, J. (2014). Visual distraction increases the detection of an unexpected object in inattentional blindness. Visual Cognition, 22(9-10), 1173-1183. https://doi.org/10.1080/13506285.2014.987859
  • Park, J., Hebrank, A., Polk, T. A., & Park, D. C. (2012). Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. Journal of Cognitive Neuroscience, 24(1), 39-50. https://doi.org/10.1162/jocn_a_00085
  • Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1-2), 8-13. https:// doi.org/10.1016/j.jneumeth.2006.11.017
  • Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain?. Journal of learning disabilities, 49(1), 3-20. https://doi. org/10.1177/0022219414521667
  • Peters, L., & De Smedt, B. (2018). Arithmetic in the developing brain: A review of brain imaging studies. Developmental Cognitive Neuroscience, 30, 265-279. https://doi.org/10.1016/j.dcn.2017.05.002
  • Piazza, M., & Eger, E. (2016). Neural foundations and functional specificity of number representations. Neuropsychologia, 83, 257-273. https://doi.org/10.1016/j.neuropsychologia.2015.09.025
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. https://doi. org/10.1016/j.cognition.2010.03.012
  • Pollack, C., & Ashby, N. C. (2018). Where arithmetic and phonology meet: the meta-analytic convergence of arithmetic and phonological processing in the brain. Developmental cognitive neuroscience, 30, 251-264. https://doi.org/10.1016/j. dcn.2017.05.003
  • Pollonini, L., Olds, C., Abaya, H., Bortfeld, H., Beauchamp, M. S., & Oghalai, J. S. (2014). Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hearing research, 309, 84-93. https://doi.org/10.1016/j.heares.2013.11.007
  • Prado, J., Mutreja, R., Zhang, H., Mehta, R., Desroches, A. S., Minas, J. E., & Booth, J. R. (2011). Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Human brain mapping, 32(11), 1932- 1947. https://doi.org/10.1002/hbm.21159
  • Richter, M. M., Zierhut, K. C., Dresler, T., Plichta, M. M., Ehlis, A. C., Reiss, K., ... & Fallgatter, A. J. (2009). Changes in cortical blood oxygenation during arithmetical tasks measured by near-infrared spectroscopy. Journal of Neural Transmission, 116(3), 267-273. https://doi.org/10.1007/s00702-008-0168-7
  • Rivera, S. M., Reiss, A., Eckert, M. A., and Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral cortex, 15, 1779–1790. https://doi. org/10.1093/cercor/bhi055
  • Rodd, J. M., DavisPrinciples of Frontal Lobe Function - Google Книги, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 1261-1269. https://doi. org/10.1093/cercor/bhi009
  • Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: an fMRI study. Frontiers in human neuroscience, 14. https://doi.org/10.3389/neuro.09.014.2008
  • Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage, 122, 1-5. https://doi.org/10.1016/j.neuroimage.2015.07.075
  • Rüsseler, J., Ye, Z., Gerth, I., Szycik, G. R., & Münte, T. F. (2018). Audio-visual speech perception in adult readers with dyslexia: an fMRI study. Brain imaging and behavior, 12(2), 357-368. https://doi.org/10.1007/s11682-017-9694-y
  • Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. (2017). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3). https://doi.org/10.1111/desc.12372
  • Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61. https:// doi.org/10.1177/1073858412440596
  • Skagenholt, M., Träff, U., Västfjäll, D., & Skagerlund, K. (2018). Examining the Triple Code Model in numerical cognition: An fMRI study. PLoS One, 13(6), e0199247. https://doi.org/10.1371/journal.pone.0199247
  • Sokolowski, H. M., Matejko, A. A., & Ansari, D. (2022). The role of the angular gyrus in arithmetic processing: A literature review. Brain Structure and Function, 1-12. https://doi.org/10.1007/s00429-022-02594-8
  • Soltanlou, M., Sitnikova, M. A., Nuerk, H. C., & Dresler, T. (2018). Applications of functional near-infrared spectroscopy (fNIRS) in studying cognitive development: The case of mathematics and language. Frontiers in psychology, 9, 277. https://doi. org/10.3389/fpsyg.2018.00277
  • Stuss, D. T., & Knight, R. T. (Eds.). (2013). Principles of frontal lobe function. Oxford University Press.
  • Themelis, G., Selb, J., Thaker, S., Stott, J. J., Custo, A., Boas, D., & Franceschini, M. A. (2004, April). Depth of arterial oscillation resolved with NIRS time and frequency domain. In Biomedical Topical Meeting (p. WF2). Optica Publishing Group. https://doi.org/10.1364/BIO.2004.WF2
  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., ... & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978
  • Vanbinst, K., Ansari, D., Ghesquiere, P., & De Smedt, B. (2016). Symbolic Numerical Magnitude Pro-cessing Is as Important to Arithmetic as Phonological Awareness Is to Reading. PloS One, 11(3), e0151045. https://doi.org/10.1371/journal. pone.0151045
  • Venkatraman, V., Ansari, D. & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia 43, 744–53 (2005). https://doi.org/10.1016/j.neuropsychologia.2004.08.005
  • Verner, M., Herrmann, M. J., Troche, S. J., Roebers, C. M., & Rammsayer, T. H. (2013). Cortical oxygen consumption in mental arithmetic as a function of task difficulty: a near-infrared spectroscopy approach. Frontiers in human neuroscience, 7, 217. https://doi.org/10.3389/fnhum.2013.00217
  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse, The Netherlands, 224, 224. Retrieved from https://dergipark.org.tr/en/download/article-file/91021
  • Vogel, S. E., & De Smedt, B. (2021). Developmental brain dynamics of numerical and arithmetic abilities. npj Science of Learning, 6(1), 1-11. https://doi.org/10.1038/s41539-021-00099-3
  • von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873. https://doi.org/10.1111/j.1469- 8749.2007.00868.x
  • Waring, R. J., & Penner-Wilger, M. (2017). Estimation of importance: Relative contributions of symbolic and non-symbolic number systems to exact and approximate calculation. Journal of Numerical Cognition, 2(3), 202-219. https://doi. org/10.5964/jnc.v2i3.9
  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11. https://doi. org/10.1016/S0010-0277(99)00066-9
  • Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage, 44(2), 428-447. https://doi.org/10.1016/j.neuroimage.2008.08.036
  • Yi-Rong, N., Si-Yun, S., Zhou-Yi, G., Si-Run, L., Yun, B., Song-Hao, L., & Chan, W. Y. (2011). Dissociated brain organization for two-digit addition and subtraction: An fMRI investigation. Brain Research Bulletin, 86(5-6), 395-402. https://doi. org/10.1016/j.brainresbull.2011.08.016
  • Yücel, M. A., Lühmann, A. V., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., ... & Wolf, M. (2021). Best practices for fNIRS publications. Neurophotonics, 8(1), 012101. https://doi.org/10.1117/1.nph.8.1.019802
  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314-327. https://doi.org/10.1006/nimg.2000.0697
  • Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33(6), 909-925. https://doi.org/10.1016/j.neubiorev.2009.03.005
  • Zimeo Morais, G. A., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes’ Location Decider (fOLD): a toolbox for probe arrangement guided by brain regions-of-interest. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018- 21716-z
Еще
Статья научная